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approximateEntropy

Measure of regularity of nonlinear time series

Syntax

approximateEntropy (X)
approximateEntropy( _ ,Name,Value)

approx_entropy
approx_entropy

Description

approx_entropy = approximateEntropy (X) estimates the approximate entropy of
the uniformly sampled time-domain signal X by reconstructing the phase space.
Approximate entropy is a measure to quantify the amount of regularity and
unpredictability of fluctuations over a time series.

approx_entropy = approximateEntropy( ,Name,Value) estimates the
approximate entropy with additional options specified by one or more Name, Value pair
arguments.

Examples

Compute Approximate Entropy of Signals

For this example, generate two signals for comparison — a random signal x_randn and a
perfectly regular signal x_reg. Set rng to default for reproducibility of the random
signal.

rng('default');
x_randn = double(randn(160,1)>0);
x_reg = repmat([1;0],50,1);

Visualize the random and regular signals.
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0.5

figure;

subplot(2,1,1);

plot(x_randn);

title('Random signal');
subplot(2,1,2);

plot(x reg);

title('Perfectly regular signal');

Random signal
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Perfectly regular signal
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The plots show that the regular signal is more predictable than the randon signal.

Find approximate entropy of the two signals.

value reg = approximateEntropy(x_reg)

2.6141e-04

value reg
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value irreg approximateEntropy(x_randn)

value irreg = 0.7289

The approximate entropy of the perfectly regular signal is significantly smaller than the
random signal. Hence, the perfectly reqular signal containing many repetitive patterns
has a relatively small value of approximate entropy while the less predictable random
signal has a higher value of approximate entropy.

Input Arguments

X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as either a vector, array, or timetable. If
X has multiple columns, approximateEntropy computes the approximate entropy by
treating X as a multivariate signal.

If X is specified as a row vector, approximateEntropy treats it as a univariate signal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: ..., 'Dimension’',3

Dimension — Embedding dimension
2 (default) | scalar | vector

Embedding dimension, specified as the comma-separated pair consisting of 'Dimension’
and a scalar or vector. When Dimension is scalar, every column in X is reconstructed
using Dimension. When Dimension is a vector having same length as the number of
columns in X, the reconstruction dimension for column i is Dimension(1i).

Specify Dimension based on the dimension of your system. For more information on
embedding dimension, see phaseSpaceReconstruction.
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Lag — Delay in phase space reconstruction
1 (default) | scalar | vector

Delay in phase space reconstruction, specified as the comma-separated pair consisting of
'Lag' and a scalar. When Lag is scalar, every column in X is reconstructed using Lag.
When Lag is a vector having same length as the number of columns in X, the
reconstruction delay for column i is Lag(1i).

If the delay is too small, random noise is introduced in the data. In contrast, if the lag is
too large, the reconstructed dynamics does not represent the true dynamics of the time
series. For more information on calculating optimal delay, see
phaseSpaceReconstruction.

Radius — Similarity criterion
0.2*variance(X) | 0.2*sqrt(trace(cov(X))) | scalar

Similarity criterion, specified as the comma-separated pair consisting of 'Radius' and a
scalar. The similarity criterion, also called radius of similarity, is a tuning parameter that
is used to identify a meaningful range in which fluctuations in data are to be considered
similar.

The default value of Radius is,

* (.2*variance(X), if X has a single column.
* 0.2*sqrt(trace(cov(X))), if X has multiple columns.

Output Arguments

approx_entropy — Approximate entropy of nonlinear time series
scalar

Approximate entropy of nonlinear times series, returned as a scalar. Approximate entropy
is a regularity statistic that quantifies the unpredictability of fluctuations in a time series.
A relatively higher value of approximate entropy reflects the likelihood that similar
patterns of observations are not followed by additional similar observations.

For example, consider two binary signals S1 and S2,
S1=[0101010101010101];
S2=[1101111010100001];
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Signal S1 is perfectly regular since it alternates between 0 and 1, that is, you can predict
the next value with knowledge of the previous value. Signal S2 however offers no insight
into the next value, even with prior knowledge of the previous value. Hence, signal S2 is
random and less predictable. Therefore, a signal containing highly repetitive patterns has
a relatively small value of approx entropy while a less predictable signal has a
relatively larger value of approx entropy.

Use approximateEntropy as a measure of regularity to quantify levels of complexity
within a time series. The ability to discern levels of complexity within data sets is useful in
the field of engineering to estimate component failure by studying their vibration and
acoustic signals, or in the clinical domain where, for instance, the chance of a seizure is
predicted by observing Electroencephalography (EEG) patterns.[2][3]

Algorithms

Approximate entropy is computed in the following way,

1 The approximateEntropy function first generates a delayed reconstruction Y; .y for
N data points with embedding dimension m, and lag T.

2 The software then calculates the number of within range points, at point i, given by,

N
N;= Y, 1(||Y,- San <R)

=12k

where 1 is the indicator function, and R is the radius of similarity.

3 - _
The approximate entropy is then calculated as approx _entropy = ®,, =Py, 4y where,
1 N-m+1
@, =(N-m+1)" > log(N;)
=1
References

[1] Pincus, Steven M. "Approximate entropy as a measure of system complexity."
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Kwan-Hoong Ng, Jasjit S. Suri. "Automated diagnosis of epileptic EEG using
entropies." Biomedical Signal Processing and Control Volume 7, Issue 4, 2012,
Pages 401-408, ISSN 1746-8094.

[3] Caesarendra, Wahyu & Kosasih, P & Tieu, Kiet & Moodie, Craig. "An application of
nonlinear feature extraction-A case study for low speed slewing bearing condition
monitoring and prognosis." IEEE/ASME International Conference on Advanced
Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM
2013.1713-1718. 10.1109/AIM.2013.6584344.

[4] Kantz, H., and Schreiber, T. Nonlinear Time Series Analysis. Cambridge: Cambridge
University Press, 2003.

See Also

correlationDimension | lyapunovExponent | phaseSpaceReconstruction

Introduced in R2018a
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Compare test data to historical data ensemble for similarity models

Syntax

compare(mdl,data)
compare(  ,Name,Value)

Description

compare(mdl,data) plots the test component degradation data in data superimposed
on the most similar data sets from the historical ensemble stored in the fitted similarity
model md1l. The K most similar data sets from the ensemble are plotted, where K is the
NumNearestNeighbors property of mdl.

compare ( ,Name, Value) specifies plotting options using one or more name-value
pair arguments.

Examples

Compare Test Data to Historical Data

Load training data.

load('pairwiseTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component.

Create and train a pairwise similarity model.

mdl = pairwiseSimilarityModel;
fit(mdl,pairwiseTrainTables, "Time","Condition")

Load testing data.

1-8
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Amplitude

Condition
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load('pairwiseTestData.mat')

Compare the degradation profile of the test data to the profiles of the historical data
ensemble.

compare(mdl,pairwiseTestData)

K Nearest Neighbor Plot

n

n
T
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Compare Test Data to Most Similar Historical Data

Load training data.

load('pairwiseTrainTables.mat"')
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The training data is a cell array of tables. Each table is a degradation feature profile for a
component.

Create and train a pairwise similarity model.

mdl = pairwiseSimilarityModel;
fit(mdl,pairwiseTrainTables, "Time", "Condition")

Load testing data.

load('pairwiseTestData.mat')

Compare the degradation profile of the test data to the profiles of the 10 most similar
members of the historical data ensemble.

compare(mdl,pairwiseTestData, 'NumNearestNeighbors',10)
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K Nearest Neighbor Plot
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Input Arguments

mdl — Similarity RUL model
hashSimilarityModel object | pairwiseSimilarityModel object |

residualSimilarityModel object

Similarity RUL model, specfied as a hashSimilarityModel object, a
pairwiseSimilarityModel object, or a residualSimilarityModel object. The
model must be fitted using fit before calling compare.
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data — Degradation feature measurements
array | table | timetable

Degradation feature profiles for estimating the RUL of similarity models, measured over
the life span of a component up to the current life time, specified as one of the following:

* (N+1)-by-M numeric array, where N is the number of features and M is the number of
feature measurements. In each row, the first column contains the usage time and the
remaining columns contain the corresponding degradation feature measurements. The
order of the features must match the order specified in the DataVariables property
of mdl.

* tableor timetable object — The table must contain variables with names that
match the strings in the DataVariables and LifeTimeVariable properties of mdl.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: 'NumNearestNeighbors', '10' plots ten similar data sets

NumNearestNeighbors — Number of nearest neighbors
Inf | finite positive integer

Number of nearest neighbors, specified as the comma-separated pair
'"NumNearestNeighbors' and either Inf or a finite positive integer. Use this option to
select the number of most similar data sets to plot by overriding the
NumNearestNeighbors property. If NumNearestNeighbors is Inf, then compare plots
the degradation data for all the ensemble data sets.

Threshold — Degradation data bounds
two-column array

Degradation data bounds, specified as the comma-separated pair 'Threshold' and a
two-column array with N rows, where N is the number of data variables used by mdl. The
first column ofThreshold contains the lower bounds for the variables, and the second
column contains the upper bounds. The bounds are rendered as yellow-colored patches.

To disable the bounds for a given variable, specify the lower and upper bounds as -Inf
and Inf, respectively.



compare

Tips

* To select which signals to plot, right-click on the plot area, and select Data Variable
Selector. In the Data Variable Selector dialog box, the Select Variables box shows
the variables that are available for plotting.

See Also

Functions
hashSimilarityModel | pairwiseSimilarityModel | residualSimilarityModel

Introduced in R2018a
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correlationDimension

Measure of chaotic signal complexity

Syntax

corr _dim = correlationDimension(X)
[corr dim,rrange,corr _int] = correlationDimension(X)
= correlationDimension ( ,Name, Value)

correlationDimension (X)

Description

corr_dim = correlationDimension(X) estimates the correlation dimension of the
uniformly sampled time-domain signal X. Correlation dimension is the measure of
dimensionality of the space occupied by a set of random points. corr_dim is estimated as
the slope of the correlation integral versus the range of radius of similarity. Use
correlationDimension as a characteristic measure to distinguish between
deterministic chaos and random noise, to detect potential faults.[1]

[corr dim,rrange,corr _int] = correlationDimension(X) additionally
estimates the range of radius of similarity and correlation integral of the uniformly
sampled time-domain signal X. Correlation integral is the mean probability that the states
of a system are close at two different time intervals, which reflects self-similarity.

= correlationDimension( ,Name, Value) estimates the correlation
dimension with additional options specified by one or more Name, Value pair arguments.

correlationDimension (X) with no output arguments creates a correlation integral
versus neighborhood radius plot.

Examples



correlationDimension

Visualize and Estimate Correlation Dimension of Data
In this example, consider a Lorenz Attractor describing a unique set of chaotic solutions.

Load the data set and visualize the Lorenz Attractor in 3D.

load('lorenzAttractorExampleData.mat', 'data');
plot3(data(:,1),data(:,2),data(:,3));
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For this example, use only x-direction data of the Lorenz Attractor. Since Lag is unknown,
estimate the delay using phaseSpaceReconstruction. Set ‘Dimension' to 3 since the
Lorenz Attractor is a three-dimensional system. The Dimension and Lag parameters are
required to create the correlation integral versus the neighborhood radius plot.
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xdata = data(:,1);
dim = 3;
[~,lag] = phaseSpaceReconstruction(xdata,[],dim)

lag = 10

Create the correlation integral versus neighborhood radius plot for the Lorenz Attractor,
using the Lag value obtained in the previous step. Set an appropriate value for
'NumPoints' to determine a good resolution for the neighborhood radius.

Np = 100;
correlationDimension(xdata, 'Dimension',dim, 'Lag',lag, 'NumPoints',Np);

Correlation Dimension: 1.800318e+00
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Correlation Integral

The first dashed, vertical green line (on the left) indicates the value of MinRadius, while
the second vertical green line (on the right), represents MaxRadius. The dashed red line
indicates the linear fit line for the correlation integral versus neighborhood radius data,
within the computed range of radius.

To compute correlation dimension, you first need to determine the MinRadius and
MaxRadius values needed for accurate estimation.

In the plot, drag the two dashed, vertical green lines to 'best fit' the linear fit line to the
original data line to obtain the range of radius.

Correlation Dimension: 1.797942e+00
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Note the new values of MinRadius and MaxRadius after dragging the two vertical lines
for an appropriate fit.
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Find the correlation dimension of the Lorenz Attractor, using the new MinRadius and
MaxRadius values obtained in the previous step.

MinR = 0.05656;
MaxR = 2.516;
corr_dim = correlationDimension(xdata, 'Dimension',dim, 'MinRadius',MinR, 'MaxRadius"',h Maxl

corr dim = 1.7490

The value of correlation dimension is directly proportional to the level of chaos in the
system, that is, a higher value of corr_dim represents a high level of chaotic complexity
in the system.

Input Arguments

X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as a vector, array, or timetable. If X has
multiple columns, correlationDimension computes the correlation dimension by
treating X as a multivariate signal.

If X is specified as a row vector, correlationDimension treats it as a univariate signal.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: ..., 'Dimension', 3

Dimension — Embedding dimension
2 (default) | scalar | vector

Embedding dimension, specified as the comma-separated pair consisting of 'Dimension’
and a scalar or vector. When Dimension is scalar, every column in X is reconstructed
using Dimension. When Dimension is a vector having same length as the number of
columns in X, the reconstruction dimension for column i is Dimension(1i).

1-18
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Specify Dimension based on the dimension of your system, that is, the number of states.
For more information on embedding dimension, see phaseSpaceReconstruction.

Lag — Delay in phase space reconstruction
1 (default) | scalar | vector

Delay in phase space reconstruction, specified as the comma-separated pair consisting of
'Lag' and either a scalar or vector. When Lag is scalar, every column in X is reconstructed
using Lag. When Lag is a vector having same length as the number of columns in X, the
reconstruction delay for column i is Lag(1i).

If the delay is too small, random noise is introduced in the data. In contrast, if the lag is
too large, the reconstructed dynamics does not represent the true dynamics of the time
series. For more information on estimating optimal delay, see
phaseSpaceReconstruction.

MinRadius — Minimum radius of similarity
MaxRadius/1000 (default) | scalar

Minimum radius of similarity, specified as the comma-separated pair consisting of
'MinRadius' and a scalar. Find the optimal value of MinRadius by adjusting the linear fit
of the correlation dimension plot.

When NumPoints = 1, only the MaxRadius is used to compute the correlation
dimension.

MaxRadius — Maximum radius of similarity
0.2*sqrt(trace(cov(X))) (default) | scalar

Maximum radius of similarity, specified as the comma-separated pair consisting of
'MaxRadius' and a scalar. Find the optimal value of MaxRadius by adjusting the linear fit
of the correlation dimension plot.

NumPoints — Number of points for computation
10 (default) | positive scalar integer

Number of points for computation, specified as the comma-separated pair consisting of
'NumPoints' and a positive scalar integer. NumPoints is the number of points between
MinRadius and MaxRadius. Choose an appropriate value for NumPoints based on the
resolution required for rrange.

NumPoints only accepts values greater than 1, and the default value is 10.
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Output Arguments

corr_dim — Correlation Dimension
scalar

Correlation dimension, returned as a scalar. corr dim is a measure of chaotic signal
complexity in multidimensional phase space and is the slope of the correlation integral
versus the range of radius of similarity. corr _dim is used in fault detection as a
characteristic measure to distinguish between deterministic chaos and random noise.

rrange — Range of radius of similarity
array

Radius of similarity, returned as an array. rrange is the difference between MaxRadius
and MinRadius split into an equal number of points defined by NumPoints.

corr_int — Correlation integral
array

Correlation integral, returned as an array. corr _int is the mean probability that the
states at two different times are close, which reflects self-similarity. NumPoints defines
the length of corr int array.

Algorithms

Correlation dimension is computed in the following way,

1 The correlationDimension function first generates a delayed reconstruction Y; .y
with embedding dimension m, and lag 7.

2 The software then calculates the number of with-in range points, at point i, given by,

N
Ni(R)= 3, 1(|¥;-Yi|<R)

i=1,i#k

where 1 is the indicator function, and R is the radius of similarity, given by, R =
exp(linspace(log(ryin), 1og(rme), N)). Here, ry,;, is MinRadius, ry,, is MaxRadius, and
N is NumPoints.

3  The correlation dimension corr_dim is the slope of C(R) vs. R where, the correlation
integral C(R) is defined as,
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2 N
CB)= g e ®
References
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See Also

approximateEntropy | lyapunovExponent | phaseSpaceReconstruction

Introduced in R2018a
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Estimate parameters of remaining useful life model using historical data

The fit function estimates the parameters of a remaining useful life (RUL) prediction
model using historical data regarding the health of an ensemble of similar components,
such as multiple machines manufactured to the same specifications. Depending on the
type of model, you specify the historical health data as a collection of life span
measurements or degradation profiles. Once you estimate the parameters of your model,
you can then predict the remaining useful life of similar components using the
predictRUL function.

Using fit, you can configure the parameters for the following types of estimation
models:

* Degradation models

* Survival models

* Similarity models

For more information on predicting remaining useful life using these models, see “Models
for Predicting Remaining Useful Life”.

Syntax

fit(mdl,data)
fit(mdl,data,lifeTimeVariable)
fit(mdl,data, lifeTimeVariable,dataVariables)

fit(mdl,data,lifeTimeVariable,dataVariables, censorVariable)
fit(mdl,data,lifeTimeVariable,dataVariables, censorVariable,
encodedVariables)

Description

fit(mdl,data) fits the parameters of the remaining useful life model md1 using the
historical data in data. This syntax applies only when data does not contain table or
timetable data.
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fit(mdl,data,lifeTimeVariable) fits the parameters of md1l using the time variable
lifeTimeVariable and sets the LifeTimeVariable property of mdl. This syntax
applies only when data contains:

* Nontabular data.

» Tabular data, and mdl does not use data variables.

fit(mdl,data,lifeTimeVariable,dataVariables) fits the parameters of mdl
using the data variables in dataVariables and sets the DataVariables property of
mdl.

fit(mdl,data,lifeTimeVariable,dataVariables, censorVariable) specifies
the censor variable for a survival model and sets the CensorVariable property of md1l.
The censor variable indicates which life-time measurements in data are not end-of-life
values. This syntax applies only when md1l is a survival model and data contains tabular
data.

fit(mdl,data,lifeTimeVariable,dataVariables, censorVariable,
encodedVariables) specifies the encoded variables for a covariate survival model and
sets the EncodedVariables property of mdl. Encoded variables are usually nonnumeric
categorical features that fit converts to numeric vectors before fitting. This syntax
applies only when md1l is a covariateSurvivalModel object and data contains tabular
data.

Examples

Train Linear Degradation Model
Load training data.
load('linTrainVectors.mat"')

The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create a linear degradation model with default settings.
mdl = linearDegradationModel;

Train the degradation model using the training data.
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fit(mdl,linTrainVectors)

Train Reliability Survival Model

Load training data.

load('reliabilityData.mat")

This data is a column vector of duration objects representing battery discharge times.
Create a reliability survival model with default settings.

mdl = reliabilitySurvivalModel;

Train the survival model using the training data.

fit(mdl, reliabilityData, "hours")

Train Hash Similarity Model Using Tabular Data
Load training data.
load('hashTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a hash similarity model that uses the following values as hashed features:
mdl = hashSimilarityModel('Method',@(x) [mean(x),std(x),kurtosis(x),median(x)1);

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(md1l,hashTrainTables, "Time", "Condition")
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Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat")

This data contains battery discharge times and related covariate information. The
covariate variables are:

* Temperature

* Load
¢ Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime", 'LifeTimeUnit"', "hours"
'DataVariables', ["Temperature","Load", "Manufacturer"], 'EncodedVariables', "Manufactu
fit(mdl, covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Suppose you have a battery pack manufactured by maker B that has run for 30 hours.
Create a test data table that contains the usage time, DischargeTime, and the measured
ambient temperature, TestAmbientTemperature, and current drawn,
TestBatterylLoad.

TestBatteryLoad = 25;

TestAmbientTemperature = 60;

DischargeTime = hours(30);

TestData = timetable(TestBatteryLoad,TestAmbientTemperature, 'B', 'RowTimes', hours(30));
TestData.Properties.VariableNames = {'Temperature', 'Load', 'Manufacturer'};
TestData.Properties.DimensionNames{1} = 'DischargeTime’;

Predict the RUL for the battery.
estRUL

predictRUL(md1l,TestData)

estRUL = duration
38.657 hr

Plot the survivor function for the covariate data of the battery.
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plot(mdl,TestData)

Survival Function Plot
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Input Arguments

mdl — Remaining useful life prediction model
degradation model | survival model | similarity model

Remaining useful life prediction model, specified as one of the models in the following
table. fit updates the parameters of this model using the historical data in data.
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RUL Model Groups Prediction Model
Degradation models linearDegradationModel

exponentialDegradationModel

Survival models reliabilitySurvivalModel

covariateSurvivalModel

Similarity models hashSimilarityModel

pairwiseSimilarityModel

residualSimilarityModel

For more information on the different model types and when to use them, see “Models for
Predicting Remaining Useful Life”.

data — Historical data
column vector | array | table | timetable | cell array

Historical data regarding the health of an ensemble of similar components, such as their
degradation profiles or life spans, specified as an array or table of component life times,
or a cell array of degradation profiles.

If your historical data is stored in an ensemble datastore object, you must first convert it
to a table before estimating your model parameters. For more information, see “Data
Ensembles for Condition Monitoring and Predictive Maintenance”.

The format of data depends on the type of RUL model you specify in md1.

Degradation Model

If mdlis a linearDegradationModel or exponentialDegradationModel, specify
data as a cell array of component degradation profiles. Each element of the cell array
contains the degradation feature profile across the lifetime of a single component. There
can be only one degradation feature for your model. You can specify data as a cell array
of:

* Two-column arrays, where each row contains the usage time in the first column and
the corresponding feature measurement in the second column. In this case, the usage
time column must contain numeric values; that is, it cannot use, for example,
duration or timedate values.
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* table objects. Select the variable from the table that contains the feature
degradation profile using dataVariables, and select the usage time variable, if
present, using lifeTimeVariable.

* timetable objects. Select the variable from the table that contains the feature
degradation profile using dataVariables, and select the usage time variable using
lifeTimeVariable.

Survival Model

For survival models, data contains the life span measurements for multiple components.
Also, for covariate survival models, data contains corresponding time-independent
covariates, such as the component provider or working regimes. Specify data as one of
the following:

* Column vector of life span measurements — This case applies only when mdl is a
reliabilitySurvivalModel.

* Array — The first column contains the life span measurements, and the remaining
columns contain the covariate values. This case applies only when mdl is a
covariateSurvivalModel.

+ tableor timetable — In this case, select the variable from the table that contains
the life span measurements using LifeTimeVariable. For covariate survival models,
select the covariate variables using dataVariables. For reliability survival models,
fit ignores dataVariables.

By default, fit assumes that all life span measurements are end-of-life values. To indicate
that a life span measurement is not an end-of-life value, use censoring. To do so, specify
data as a table or timetable that contains a censor variable. The censor variable is a
binary variable that is 1 when the corresponding life span measurement is not an end-of-
life value. Select the censor variable using censorVariable.

Similarity Model

If mdlis a hashSimilarityModel, pairwiseSimilarityModel, or
residualSimilarityModel, specify data as a cell array of degradation profiles. Each
element of the cell array contains degradation feature profiles across the lifetime a single
component. For similarity models, you can specify multiple degradation features, where
each feature is a health indicator for the component. You can specify data as a cell array
of:

* (N+1)-by-M; column arrays, where N is the number of features and M; is the number
of feature measurements. In each row, the first column contains the usage time and
the remaining columns contain the corresponding degradation feature measurements.
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* table objects. Select the variables from the table that contain the feature
degradation profiles using dataVariables, and select the corresponding usage time
variable, if present, using lifeTimeVariable.

+ timetable objects. Select the variables from the table that contain the feature
degradation profiles using dataVariables, and select the corresponding usage time
variable using lifeTimeVariable.

fit assumes that all the degradation profiles represent run-to-failure data; that is, the
data starts when the component is in a healthy state and end when the component is
close to failure or maintenance.

lifeTimeVariable — Life time variable
""" (default) | string

Life time variable, specified as a string. If data is a:

* table, then lifeTimeVariable must match one of the variable names in the table.

 timetable, then lifeTimeVariable one of the variable names in the table or the
dimension name of the time variable , data.Properties.DimensionNames{1}.

table or timetable, then lifeTimeVariable must match one of the variable names
in the table. If there is no life time variable in the table or if data is nontabular, then you
can omit lifeTimeVariable.

lifeTimeVariable must be "" or a valid MATLAB® variable name, and must not match
any of the strings in dataVariables.

fit stores lifeTimeVariable in the LifeTimeVariable property of the model.

dataVariables — Feature data variables
"" (default) | string | string array

Feature data variables, specified as a string or string array. If data is a:

* Degradation model, then dataVariables must be a string.

* Similarity model or covariate survival model, then dataVariables must be a string
array.

* Reliability survival model, then fit ignores dataVariables.

If datais:
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+ A tableor timetable, then the strings in dataVariables must match variable
names in the table.

* Nontabular, then dataVariables must be "" or contain the same number of strings
as there are data columns in data. The strings in dataVariables must be valid
MATLABvariable names.

fit stores dataVariables in the DataVariables property of the model.

censorVariable — Censor variable
""" (default) | string

Censor variable for survival models, specified as a string. The censor variable is a binary
variable that indicates which life-time measurements in data are not end-of-life values. To
use censoring, data must be a table or timetable.

If you specify censorVariable, the string must must match one of the variable names in
data and must not match any of the strings in dataVariables or lifeTimeVariable.

fit stores censorVariable in the CensorVariable property of the model.

encodedVariables — Encoded variables
""" (default) | string | string array

Encoded variables for covariate survival models, specified as a string or string array.
Encoded variables are usually nonnumeric categorical features that fit converts to
numeric vectors before fitting. You can also designate logical or numeric values that take
values from a small set to be encoded.

The strings in encodedVariables must be a subset of the strings in dataVariables.

fit stores encodedVariables in the EncodedVariables property of the model.

See Also

Functions
predictRUL | table | timetable

Topics
“Models for Predicting Remaining Useful Life”
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“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a
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generateSimulationEnsemble

Generate ensemble data by running a Simulink model

Syntax

[status,E] = generateSimulationEnsemble(simin)

[status,E] = generateSimulationEnsemble(simin, location)

[status,E] = generateSimulationEnsemble(simin,location,Name,Value)
Description

[status,E] = generateSimulationEnsemble(simin) generates data for a
simulation ensemble by running the Simulink® model specified by simin. This input
argument is a vector of Simulink.SimulationInput objects that also specifies other
parameters to change during simulation. The output arguments indicate whether any
simulations generate errors and return any such errors. The simulation data logs are
stored in the current folder. Use simulationEnsembleDatastore to create an
ensemble datastore for interacting with the simulated data.

For general information about data ensembles, see “Data Ensembles for Condition
Monitoring and Predictive Maintenance”.

[status,E] = generateSimulationEnsemble(simin,location) also specifies a
path to a location at which to store the simulation results.

[status,E] = generateSimulationEnsemble(simin, location,Name,Value)
uses additional options specified by one or more Name, Value pair arguments.

Examples
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Generate Ensemble of Fault Data

Generate a simulation ensemble datastore of data representing a machine operating
under fault conditions by simulating a Simulink® model of the machine while varying a
fault parameter.

Load the Simulink model. This model is a simplified version of the gear-box model
described in “Using Simulink to Generate Fault Data”. For this example, only one fault
mode is modeled, a gear-tooth fault.

mdl = 'TransmissionCasingSimplified';
open_system(mdl)

The gear-tooth fault is modeled as a disturbance in the Gear Tooth fault subsystem.
The magnitude of the disturbance is controlled by the model variable ToothFaultGain,
where ToothFaultGain = 0 corresponds to no gear-tooth fault (healthy operation). To
generate the ensemble of fault data, you use generateSimulationEnsemble to
simulate the model at different values of ToothFaultGain, ranging from -2 to zero. This
function uses an array of Simulink.SimulationInput objects to configure the
Simulink model for each member in the ensemble. Each simulation generates a separate
member of the ensemble in its own data file. Create such an array, and use setVariable
to assign a tooth-fault gain value for each run.

toothFaultValues = -2:0.5:0; % 5 ToothFaultGain values

for ct = numel(toothFaultValues):-1:1

simin(ct) = Simulink.SimulationInput(mdl);

simin(ct) = setVariable(simin(ct), 'ToothFaultGain', toothFaultValues(ct));
end

For this example, the model is already configured to log certain signal values, Vibration
and Tacho, as well as state values xout and xfinal (see “Export Signal Data Using
Signal Logging” (Simulink)). generateSimulationEnsemble further configures the
model to:

» Save logged data to files in the folder you specify.

* Use the timetable format for signal logging.

* Store each Simulink.SimulationInput object in the saved file with the
corresponding logged data.
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Specify a location for the generated data. For this example, save the data to a folder
called Data within your current folder. The indicator status is 1 (true) if all the
simulations complete without error.

mkdir Data
location = fullfile(pwd, 'Data');
[status,E] = generateSimulationEnsemble(simin,location);

[26-Feb-2018 19:09:46] Running SetupFcn...

[26-Feb-2018 19:09:46] Running simulations...
[26-Feb-2018 19:10:11] Completed 1 of 5 simulation runs
[26-Feb-2018 19:10:30] Completed 2 of 5 simulation runs
[26-Feb-2018 19:10:45] Completed 3 of 5 simulation runs
[26-Feb-2018 19:11:00] Completed 4 of 5 simulation runs
[26-Feb-2018 19:11:16] Completed 5 of 5 simulation runs

Finally, create the simulation ensemble datastore using the generated data. The resulting
simulationEnsembleDatastore object points to the generated data. The object lists
the data variables in the ensemble, and by default all the variables are selected for
reading. Examine the DataVariables and SelectedVariables properties of the
ensemble to confirm these designations.

ensemble = simulationEnsembleDatastore(location)

ensemble =
simulationEnsembleDatastore with properties:

DataVariables: [6x1 string]
IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]
SelectedVariables: [6x1 string]
NumMembers: 5
LastMemberRead: [0x0 string]

ensemble.DataVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"
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ensemble.SelectedVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"

You can now use ensemble to read and analyze the generated data in the ensemble
datastore. See simulationEnsembleDatastore for more information.

Input Arguments

simin — Simulation configurations
vector of Simulink.SimulationInput objects

Simluation configurations, specified as a vector of Simulink.SimulationInput
objects. The simulation configurations specify parameters for each generated member of
the ensemble, such as:

¢ Simulink model to run
* Values of model variables

* Block parameters
* Model initial state

Thus, for example, you can create a vector of Simulink.SimulationInput objects in
which all simulation configurations are identical except for the parameters that model the
presence and severity of faults in your system. You can then use the vector to generate an
ensemble of simulated data representing a range of healthy and faulty operating
conditions.

location — File path
pwd (default) | string | character vector

File path at which to store simulation data, specified as a string or a character vector. If
you do not provide Location, the function uses the current folder (the path returned by
pwd).
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Example: pwd + "\simResults"

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'UseParallel’, true

UseParallel — Whether to run simulations in parallel
false (default) | true

Whether to run simulations in parallel, specified as the comma-separated pair consisting
of 'UseParallel’ and:

» false — Do not run simulations in parallel.

* true — Use a parallel pool to run multiple simulations in parallel (requires Parallel
Computing Toolbox™).

Output Arguments

status — Simulation error status
logical

Simulation error status, returned as a logical value:

* 1 (true) if all simulations run to completion without error
* 0 (false) otherwise

E — Simulation errors
structure array

Simulation errors, returned as a structure array with fields:

* 'SimulationInput' — Simulink.SimulationInput for the simulation run that
generated the error

* 'ErrorDiagnostic' — String containing the error
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See Also

Simulink.SimulationInput | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a
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lyapunovExponent

Characterize the rate of separation of infinitesimally close trajectories

Syntax

lyap _exp = lyapunovExponent (X, fs)
[lyap _exp,estep,ldiv] = lyapunovExponent (X, fs)
[lyap _exp,estep,ldiv] = lyapunovExponent( _ ,Name,Value)

lyapunovExponent (X, fs)

Description

lyap _exp = lyapunovExponent (X, fs) estimates the Lyapunov exponent of the
uniformly sampled time-domain signal X using sampling frequency fs. Use
lyapunovExponent to characterize the rate of separation of infinitesimally close
trajectories in phase space to distinguish different attractors. Lyapunov exponent is useful
in quantifying the level of chaos in a system, which in turn can be used to detect potential
faults.

[lyap _exp,estep,ldiv] = lyapunovExponent (X, fs) estimates the Lyapunov
exponent, expansion step, and the corresponding logarithmic divergence of the uniformly
sampled time-domain signal X. Use expansion step estep and the corresponding
logarithmic divergence ldiv for signal diagnostics.

[lyap _exp,estep,ldiv] = lyapunovExponent(  ,Name,Value) estimates the
Lyapunov exponent with additional options specified by one or more Name, Value pair
arguments.

lyapunovExponent (X, fs) with no output arguments creates an average logarithmic
divergence versus expansion step plot.

Use the generated interactive plot to find an appropriate ExpansionRange.
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Examples

Visualize and Estimate Largest Lyapunov Exponent
In this example, consider a Lorenz attractor describing a unique set of chaotic solutions.

Load the data set and sampling frequency fs to the workspace, and visualize the Lorenz
attractor in 3-D.

load('lorenzAttractorExampleData.mat', 'data','fs');
plot3(data(:,1),data(:,2),data(:,3));
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For this example, use the x-direction data of the Lorenz attractor. Since Lag is unknown,
estimate the delay using phaseSpaceReconstruction. Set Dimension to 3 since the
Lorenz attractor is a three-dimensional system. The Dimension and Lag parameters are
required to create the logarithmic divergence versus expansion step plot.

xdata = data(:,1);
dim = 3;
[~,1lag] = phaseSpaceReconstruction(xdata,[],dim)

lag = 10

Create the average logarithmic divergence versus expansion step plot for the Lorenz
attractor, using the Lag value obtained in the previous step. Set a sufficiently large
Expansion Range to capture all the expansion steps.

ERange = 200;
lyapunovExponent(xdata, fs, 'Dimension',dim, 'Lag',lag, 'ExpansionRange',ERange)
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Average Log Divergence

Largest Lyapunov Exponent: 1.622292e+00
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The first dashed, vertical green line (on the left) indicates the minimum number of steps
used to estimate the expansion range, while the second vertical green line (on the right),
represents the maximum number of steps used. Together, the first and second vertical
lines represent the Expansion Range. The dashed red line indicates the linear fit line for
the data, within the expansion range.

To compute the largest Lyapunov exponent, you first need to determine the expansion
range needed for accurate estimation.

In the plot, drag the two dashed, vertical green lines to best fit the linear fit line to the

Kﬂ KH'IHJ: .

original data line to obtain the expansion range: ™min and
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Largest Lyapunov Exponent: 1.685992e+00
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Note the new values of the Expansion Range after dragging the two vertical lines for an
appropriate fit.

Since Expansion Range can only be specified using whole numbers, round-off Kain and

Kuax 10 the nearest integer. Find the largest Lyapunov exponent of the Lorenz attractor
using the new Expansion Range value.

Kmin 21;
Kmax 161;
lyap_exp = lyapunovExponent(xdata,fs, 'Dimension',dim, 'Lag',lag, 'ExpansionRange’', [Kmin |

lyap exp = 1.6837
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A negative Lyapunov exponent indicates convergence, while positive Lyapunov exponents
demonstrate divergence and chaos. The magnitude of lyap exp is an indicator of the rate
of convergence or divergence of the infinitesimally close trajectories.

Input Arguments

X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as a vector, array, or timetable. If X has
multiple columns, lyapunovExponent computes the largest Lyapunov exponent by
treating X as a multivariate signal.

If X is specified as a row vector, LlyapunovExponent treats it as a univariate signal.

fs — Sampling frequency
scalar

Sampling frequency, specified as a scalar. Sampling frequency or sampling rate is the
average number of samples obtained in one second.

If fs is not supplied, a normalized frequency of 21 is used to compute the Lyapunov
exponent. If X is specified as a timetable, the sampling time is inferred from it.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ...,NameN,ValueN.

Example: .., 'Dimension',3

Dimension — Embedding dimension
2 (default) | scalar | vector

Embedding dimension, specified as the comma-separated pair consisting of 'Dimension’
and either a scalar or vector. When Dimension is scalar, every column in X is
reconstructed using Dimension. When Dimension is a vector having same length as the
number of columns in X, the reconstruction dimension for column i is Dimension(1i).
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Specify Dimension based on the dimension of your system, that is, the number of states.
For more information on embedding dimension, see phaseSpaceReconstruction.

Lag — Delay in phase space reconstruction
1 (default) | scalar | vector

Delay in phase space reconstruction, specified as the comma-separated pair consisting of
'Lag’ and either a scalar or vector. When Lag is scalar, every column in X is reconstructed
using Lag. When Lag is a vector having same length as the number of columns in X, the
reconstruction delay for column i is Lag(1i).

The default value of Lag is 1.

If the delay is too small, random noise is introduced in the data. In contrast, if the lag is
too large, the reconstructed dynamics do not represent the true dynamics of the time
series. For more information on estimating optimal delay, see
phaseSpaceReconstruction.

MinSeparation — Mean period
1/max (meanfreq(X)) (default) | scalar

Mean period, specified as the comma-separated pair consisting of 'MinSeparation' and
a scalar.

MinSeparation is the threshold value used to find the nearest neighbor i* for a point i
to estimate the largest Lyapunov exponent.

The default value of MinSeparationis 1/max(meanfreq(X)).

ExpansionRange — Range of expansion steps
[1, 5] (default) | 1x2 positive integer array | positive scalar integer

Range of expansion steps, specified as the comma-separated pair consisting of
'ExpansionRange' and either a 1x2 positive integer array or a positive scalar integer.

The minimum and maximum value of ExpansionRate is used to estimate the local
expansion rate to calculate the Lyapunov exponent.

If ExpansionRange is specified as a scalar M, then the range is set to be [1, M].
ExpansionRange can only be specified using positive whole numbers and the default
valueis [1, 5].
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Output Arguments

lyap_exp — Largest Lyapunov exponent
scalar

Largest Lyapunov exponent, returned as a scalar. Llyap exp quantifies the rate of
divergence or convergence of close trajectories in phase space.

A negative Lyapunov exponent indicates convergence, while positive Lyapunov exponents
demonstrate divergence and chaos. The magnitude of Llyap exp is an indicator of the
rate of convergence or divergence of the infinitesimally close trajectories.

The ability to discern levels of divergence within data sets is useful in the field of
engineering to estimate component failure by studying their vibration and acoustic
signals, or to predict when a ship would capsize based on its motion.[2][3]

estep — Expansion step used for estimation
array

Expansion step used for estimation, returned as an array. estep is the difference between
the maximum and minimum expansion range split into an equal number of points defined
by the maximum value of ExpansionRange.

ldiv — Logarithmic divergence
array

Logarithmic divergence, returned as an array with the same size as estep. The
magnitude of each value in 1div corresponds to the logarithmic convergence or
divergence of each point in estep.

Algorithms

Lyapunov exponent is calculated in the following way:

1 The lyapunovExponent function first generates a delayed reconstruction Y;  with
embedding dimension m, and lag 7.

2 For a point i, the software then finds the nearest neighbor point i* that satisfies
minV; - Y, |

‘i - f‘ > MinSeparation
such that
period, is the reciprocal of the mean frequency.

, where MinSeparation, the mean
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3 The largest Lyapunov exponent is calculated as,

a 1 K "YHK Yok "
lyap _exp= ﬁ K*dtKg lnW

where, K,,;, and K., represent ExpansionRange, dt is the sampling time and

[¥iek ~Yr o

ldiv=In—F——71—
[¥: -v; |

References

[1] Michael T. Rosenstein , James ]. Collins , Carlo J. De Luca. "A practical method for
calculating largest Lyapunov exponents from small data sets ". Physica D 1993.
Volume 65. Pages 117-134.

[2] Caesarendra, Wahyu & Kosasih, P & Tieu, Kiet & Moodie, Craig. "An application of
nonlinear feature extraction-A case study for low speed slewing bearing condition
monitoring and prognosis." IEEE/ASME International Conference on Advanced
Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM
2013.1713-1718. 10.1109/AIM.2013.6584344.

[3] McCue, Leigh & W. Troesch, Armin. (2011). "Use of Lyapunov Exponents to Predict
Chaotic Vessel Motions". Fluid Mechanics and its Applications. 97. 415-432.
10.1007/978-94-007-1482-3 23.

See Also

approximateEntropy | correlationDimension | phaseSpaceReconstruction

Introduced in R2018a
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phaseSpaceReconstruction

Convert observed time series to state vectors

Syntax

XR = phaseSpaceReconstruction(X,lag,dim)

[XR,est lag,est dim] = phaseSpaceReconstruction(X)
[XR,est lag,est dim] = phaseSpaceReconstruction(X, lag)
[XR,est lag,est dim] = phaseSpaceReconstruction(X,[],dim)

[ 1 = phaseSpaceReconstruction( __ ,Name,Value)
phaseSpaceReconstruction( )
Description

XR = phaseSpaceReconstruction(X, lag,dim) returns the reconstructed phase
space XR of the uniformly sampled time-domain signal X with time delay lag and
embedding dimension dim as inputs.

Use phaseSpaceReconstruction to verify the system order and reconstruct all
dynamic system variables, while preserving system properties. Reconstructing the phase
space is useful when limited data is available, or when the phase space dimension and lag
is unknown. The nonlinear features approximateEntropy, correlationDimension,
and lyapunovExponent use phaseSpaceReconstruction as the first step of the
computation.

[XR,est _lag,est dim] = phaseSpaceReconstruction(X) returns reconstructed
phase space XR along with the estimated delay est 1lag and embedding dimension
est dim.

[XR,est lag,est dim] = phaseSpaceReconstruction(X, lag) returns the

reconstructed phase space XR of uniformly sampled time domain signal X and embedding
dimension est dim using time dealy specified by lag.
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[XR,est lag,est dim] = phaseSpaceReconstruction(X,[],dim) returns the
reconstructed phase space XR of uniformly sampled time domain signal X and time delay
est lag using embedding dimension specified by dim.

[ 1 = phaseSpaceReconstruction( __ ,Name,Value) returns the
reconstructed phase space XR with additional options specified by one or more
Name, Value pair arguments.

phaseSpaceReconstruction( ) with no output arguments creates a matrix of
subaxes of the reconstructed phase space with histogram plots along the diagonal.

Examples

Reconstruct Data using Phase Space Reconstruction

In this example, assume that you have measurement only in x-direction for a Lorenz
Attractor, which is a three-dimensional system. Using this limited data, reconstruct the
phase space such that the properties of the original system are preserved.

Load the Lorenz Attractor data and visualize its X, y and z measurements on a 3-D plot.

load('lorenzAttractorExampleData.mat', 'data');
plot3(data(:,1),data(:,2),data(:,3));
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Estimate the lag and dimension using the x-direction measurement.

xdata = data(:,1);
[~,est lag,est dim] = phaseSpaceReconstruction(xdata)

10

est lag
est dim = 3

Since the Lorenz Attractor has data in 3 dimensions, the estimated embedding dimension
est dimis 3.

Visualize the reconstructed phase space using the estimated lag and embedding
dimension.
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phaseSpaceReconstruction(xdata,est lag,est dim);

Reconstructed Phase Space

x4t}

X, (t+10)

x,(t+20)

=20 0 20 =20 0

20 -20 L] 20
%, () x,(1+10)

x1u+2ﬂ}

As observed from the 3x3 phase space plot, the topology of the attractor is recovered.
X2 +10) 5pq 118 +20) g6 the other two states reconstruced with the estimated lag
value of 10. The diagonal plots (1,1), (2,2) and (3,3) represent the histogram of x i) ,

X+ 100 4pq 411 +20) gaa . respectively.
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Input Arguments

X — Uniformly sampled time-domain signal
vector | array | timetable

Uniformly sampled time-domain signal, specified as a vector, array, or timetable. When
multiple columns exist in X, each column is treated as an independent time series.

If X is specified as a row vector, phaseSpaceReconstruction treats it as a univariate
signal.

dim — Embedding dimension
scalar | vector

Embedding dimension, specified as a scalar or vector. dim is the dimension of the space
in which you reconstruct a phase portrait starting from your measurements.

When dim is scalar, every column in X is reconstructed using dim. When dim is a vector
having same length as the number of columns in X, the reconstruction dimension for
column i is dim(1i).

lag — Delay value used in phase space reconstruction
scalar | vector

Delay value used in phase space reconstruction, specified as a scalar or vector. When lag
is scalar, every column in X is reconstructed using lag. When lag is a vector having same
length as the number of columns in X, the reconstruction delay for column i is lag(1i).

If the time delay is too small, random noise is introduced in the states. In contrast, if the
lag is too large, the reconstructed dynamics do not represent the true dynamics of the
time series.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: ...'HistogramBins',12
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HistogramBins — Number of bins for discretization
10 (default) | scalar

Number of bins for discretization, specified as the comma-separated pair consisting of
'HistogramBins' and a scalar. HistogramBins is required to compute the Average
Mutual Information (AMI) to estimate delay est lag.

Set the value of HistogramBins based on the length of X.

MaxLag — Maximum value of lag
10 (default) | scalar

Maximum value of lag, specified as the comma-separated pair consisting of 'MaxLag' and
a scalar. MaxLag is used to estimate delay est delay using the Average Mutual
Information (AMI) algorithm.

PercentFalseNeighbors — Factor to determine embedding dimension
0.1 (default) | scalar

Factor to determine embedding dimension, specified as the comma-separated pair
consisting of 'PercentFalseNeighbors' and a scalar. When percentage of false nearest
neighbors drops below the tuning parameter PercentFalseNeighbors at a dimension
d, d is considered as the embedding dimension.

The default value of PercentFalseNeighbors is 0.1 and permissible values lie within
the range 0 through 1.

DistanceThreshold — Distance threshold to determine false neighbors
10 (default) | scalar

Distance threshold to determine false neighbors, specified as the comma-separated pair
consisting of 'DistanceThreshold' and a scalar. DistanceThreshold is a tuning
parameter to determine the number of points that are false nearest neighbors in the
reconstructed phase space.

The default value of DistanceThreshold is 10, and suggested values lie within the
range 10 through 50.

MaxDim — Maximum value of embedding dimension
5 (default) | scalar

Maximum value of embedding dimension, specified as the comma-separated pair
consisting of 'MaxDim' and a scalar.
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Change the value of MaxDim if the number of states of your system exceeds 5.

Output Arguments

XR — Reconstructed phase space
array | timetable

Reconstructed phase space, returned as either an array or timetable. XR contains state
vectors based on the embedding dimension and lag value.

est_lag — Estimated time delay
scalar

Estimated time delay, returned as a scalar, regardless of the size of X.

est lag is estimated using Average Mutual Information (AMI) algorithm. For more
information, see “Algorithms” on page 1-53.

est_dim — Estimated embedding dimension
scalar

Estimated embedding dimension, returned as a scalar, regardless of the size of X.

est dimis estimated using False Nearest Neighbor (FNN) algorithm. For more
information, see “Algorithms” on page 1-53.

Algorithms

Phase Space Reconstruction

T
X7 =(%71,%1 9500, %
For a uniformly sampled univariate time signal ~ - (x10%12-5,) )

phaseSpaceReconstruction computes the delayed reconstruction
Xj, = (xl,i>x1,i+~1>--->x1,i+(m1—1) 1)’ 1=1,2..,N-(m; -1)7;

where, N is the length of the time series, T; is the lag, and m; is the embedding dimension
for X;.
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Similarly, for a multivariate time series X given by,

X:[Xl,Xz,...,XS]:
XLN T XSN

phaseSpaceReconstruction computes the reconstruction for each time series as,
X[ = (X{ ;. X500 X5 ), 1 = 1,2, N — (max{m;} - 1)(max{z;})

where S is the number of measurements, and N is the length of the time series.
Delay Estimation

The delay for phase space reconstruction is estimated using Average Mutual Information
(AMI). For reconstruction, the time delay is set to be the first local minimum of AMI.

Average Mutual Information is computed as,
N
plx;,x;
AMI(T) = p(%;, %7 )logy {Ml
P} p(%) p(xicr)
where, N is the length of the time series and T = 1:MaxLag.
Embedding Dimension Estimation

The embedding dimension for phase space reconstruction is estimated using False
Nearest Neighbor (FNN) algorithm.

+ For a point i at dimension d, the points X"; and its nearest point X™; in the
reconstructed phase space {X";}, i = 1:N, are false neighbors if

R?(d+1)-RZ(d
i ( +2) L ( ) > DistanceThreshold
R; (d)

xr x|

1 1

R} (d)=|

where, is the distance metric.
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* The estimated embedding dimension d is the smallest value that satisfies the condition
pmn < PercentFalseNeighbors where, pj,, is the ratio of FNN points to total
number of points in the reconstructed phase space.
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See Also

approximateEntropy | correlationDimension | lyapunovExponent

Introduced in R2018a
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plot

Plot survivor function for covariate survival remaining useful life model

Syntax

plot(mdl)
plot(mdl, covariates)

Description

plot (mdl) plots the baseline survivor function of the fitted covariate survival model md1l
against the life time value for which it was computed. The plot data is stored in the
BaselineCumulativeHazard property of mdl.

plot(mdl, covariates) plots the survivor function computed for the covariate data in
covariates. To obtain the survivor function, the hazard rate is computed using the
covariates and combined with the baseline survivor function.

Examples

Train Covariate Survival Model
Load training data.
load('covariateData.mat')

This data contains battery discharge times and related covariate information. The
covariate variables are:

* Temperature
* Load
* Manufacturer

The manufacturer information is a categorical variable that must be encoded.
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Create a covariate survival model.

mdl = covariateSurvivalModel;

Train the survival model using the training data, specifying the life time variable, data
variables, and encoded variable. There is no censor variable for this training data.

fit(mdl, covariateData, "DischargeTime", ["Temperature", "Load", "Manufacturer"],[], "Manufat
Successful convergence: Norm of gradient less than OPTIONS.TolFun

Plot the baseline survivor function for the model.

plot(mdl)

Survival Function Plot
'1 g T T T T T

09r

0.8

0.vr

0.6

55
Time hr
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Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat')

This data contains battery discharge times and related covariate information. The
covariate variables are:

* Temperature

 Load
e Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit"', "hours"
'DataVariables', ["Temperature","Load", "Manufacturer"], 'EncodedVariables', "Manufactu
fit(mdl,covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Suppose you have a battery pack manufactured by maker B that has run for 30 hours.
Create a test data table that contains the usage time, DischargeTime, and the measured
ambient temperature, TestAmbientTemperature, and current drawn,
TestBatterylLoad.

TestBatterylLoad = 25;

TestAmbientTemperature = 60;

DischargeTime = hours(30);

TestData = timetable(TestBatterylLoad,TestAmbientTemperature, 'B', 'RowTimes', hours(30));
TestData.Properties.VariableNames = {'Temperature', 'Load', 'Manufacturer'};
TestData.Properties.DimensionNames{1l} = 'DischargeTime’;

Predict the RUL for the battery.
estRUL = predictRUL(md1l,TestData)

estRUL = duration
38.657 hr
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Plot the survivor function for the covariate data of the battery.

plot(mdl,TestData)

Survival Function Plot
'1 T T T T T

Baseline
0.9 Current | 7

0.3

0.2

011

55 60
Time hr

Input Arguments

mdl — Covariate survival RUL model
covariateSurvivalModel object

Covariate survival RUL model, specified as a covariateSurvivalModel object.
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plot plots the data in the BaselineCumulativeHazard property of mdl, which is a
two-column array. The second column contains the baseline survivor functions values, and
the first column contains the corresponding life time values. The life time values are
plotted in the units specified by the LifeTimeUnits property of mdl.

covariates — Current covariate values
row vector | table with one row | timetable with one row

Current covariate values for the component, specified as a:

* Row vector whose elements specify the component covariate values only and not the
life time values. The number of covariate values must match the number and order of
the covariate data columns used when estimating mdl using fit.

* table or timetable with one row. The table must contain the variables specified in
the DataVariables property of md1l.

If the covariate data contains encoded variables, then you must specify covariates
using a table or timetable.

To obtain the survivor function, the hazard rate is computed using the covariates and
combined with the baseline survivor function. For more information, see “Cox
Proportional Hazards Model” (Statistics and Machine Learning Toolbox).

See Also

Functions
covariateSurvivalModel | coxphfit | predictRUL

Topics
“Cox Proportional Hazards Model” (Statistics and Machine Learning Toolbox)

Introduced in R2018a
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predictRUL

Estimate remaining useful life for a test component

The predictRUL function estimates the remaining useful life (RUL) of a test component
given an estimation model and information about its usage time and degradation profile.
Before predicting the RUL, you must first configure your estimation model using
historical data regarding the health of an ensemble of similar components, such as
multiple machines manufactured to the same specifications. To do so, use the fit
function.

Using predictRUL, you can estimate the remaining useful life for the following types of
estimation models:

* Degradation models
* Survival models
* Similarity models

For more information on predicting remaining useful life using these models, see “Models
for Predicting Remaining Useful Life”.
Syntax

estRUL predictRUL(md1,data)

estRUL = predictRUL(md1l,data,bounds)

estRUL = predictRUL(mdl,threshold)

estRUL = predictRUL(mdl,currentValue, threshold)
estRUL = predictRUL(mdl,usageTime)

estRUL = predictRUL(md1l, covariates)
estRUL = predictRUL( _ ,Name,Value)

[estRUL,ciRUL] = predictRUL( )
[estRUL, ciRUL,pdfRUL] = predictRUL( )
[estRUL, ciRUL,pdfRUL,histRUL] = predictRUL( )
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Description

estRUL = predictRUL(md1l,data) estimates the remaining useful life for a component
using similarity model mdl and the degradation feature profiles in data. data contains
feature measurements over the life span of the component up to the current life time.

estRUL = predictRUL(md1l,data,bounds) estimates the remaining useful life for a
component using a similarity model and the feature bounds specified in bounds.

estRUL = predictRUL(mdl,threshold) estimates the RUL for a component using
degradation model md1 and the current life time variable value stored in mdl. The RUL is
the remaining time before the forecasted response of the model reaches the threshold
value threshold.

estRUL = predictRUL(mdl, currentValue, threshold) estimates the RUL for a
component using a degradation model and the current usage time and degradation
feature measurement in currentValue.

estRUL = predictRUL(md1l,usageTime) estimates the RUL for a component using
residual survival model md1 and the current usage time for the component.

estRUL = predictRUL(md1l, covariates) estimates the RUL of a component using
covariate survival model mdl and the current covariate values for the component.

estRUL = predictRUL(  ,Name,Value) specifies additional options using one or
more name-value pair arguments.

[estRUL,ciRUL] = predictRUL( ) returns the confidence interval associated
with the RUL estimation.

[estRUL, ciRUL,pdfRUL] = predictRUL( ) returns the probability density
function for the RUL estimation.

[estRUL, ciRUL,pdfRUL,histRUL] = predictRUL( ) returns the histogram of
component similarity scores when estimating RUL using a similarity model.

Examples
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Train Pairwise Similarity Model
Load training data.
load('pairwiseTrainVectors.mat"')

The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create a pairwise similarity model with default settings.
mdl = pairwiseSimilarityModel;
Train the similarity model using the training data.

fit(mdl,pairwiseTrainVectors)

Update Linear Degradation Model and Predict RUL

Load observation data.

load('linTestData.mat', 'linTestDatal')

For this example, assume that the training data is not historical data, but rather real-time
observations of the component condition.

Based on knowledge of the degradation feature limits, define a threshold condition
indicator value that indicates the end-of-life of a component.

threshold = 60;

Create a linear degradation model arbitrary prior distribution data and a specified noise
variance. Also, specify the life time and data variable names for the observation data.

mdl = linearDegradationModel('Theta',1, 'ThetaVariance',le6, 'NoiseVariance',0.003,...

'LifeTimeVariable',"Time", 'DataVariables', "Condition", ...
'LifeTimeUnit', "hours");

Observe the component condition for 50 hours, updating the degradation model after
each observation.
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for i=1:50
update(mdl,linTestDatal(i,:));
end

After 50 hours, predict the RUL of the component using the current life time value stored
in the model.

estRUL = predictRUL(md1l,threshold)

estRUL = duration
59.406 hr

The estimated RUL is about 60 hours, which indicates a total predicted life span of 110
hours.

Predict RUL Using Exponential Degradation Model
Load training data.
load('expTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Hours" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create an exponential degradation model, specifying the life time variable units.

mdl = exponentialDegradationModel('LifeTimeUnit', "hours");

Train the degradation model using the training data. Specify the names of the life time
and data variables.

fit(mdl,expTrainTables, "Time", "Condition")

Load testing testing data, which is a run-to-failure degradation profile for a test
component. The test data is a table with the same life time and data variables as the
training data.

load('expTestData.mat"')
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Based on knowledge of the degradation feature limits, define a threshold condition
indicator value that indicates the end-of-life of a component.

threshold = 500;

Assume that you measure the component condition indicator after 150 hours. Predict the
remaining useful life of the component at this time using the trained exponential
degradation model. The RUL is the forecasted time at which the degradation feature will
pass the specified threshold.

estRUL

predictRUL(md1l,expTestData(150,:),threshold)

estRUL = duration
129.73 hr

The estimated RUL is around 130 hours, which indicates a total predicted life span of 280
hours.

Predict RUL Using Covariate Survival Model
Load training data.
load('covariateData.mat')

This data contains battery discharge times and related covariate information. The
covariate variables are:

* Temperature

* Load

* Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit', "hours"
'DataVariables', ["Temperature","Load", "Manufacturer"], 'EncodedVariables', "Manufactu

fit(md1l, covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun
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Suppose you have a battery pack manufactured by maker B that has run for 30 hours.
Create a test data table that contains the usage time, DischargeTime, and the measured
ambient temperature, TestAmbientTemperature, and current drawn,
TestBatterylLoad.

TestBatteryLoad = 25;

TestAmbientTemperature = 60;

DischargeTime = hours(30);

TestData = timetable(TestBatterylLoad,TestAmbientTemperature, 'B', 'RowTimes', hours(30));
TestData.Properties.VariableNames = {'Temperature', 'Load', 'Manufacturer'};
TestData.Properties.DimensionNames{1} = 'DischargeTime’;

Predict the RUL for the battery.
estRUL = predictRUL(mdl,TestData)

estRUL = duration
38.657 hr

Plot the survivor function for the covariate data of the battery.

plot(mdl,TestData)
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Predict RUL Using Reliability Survival Model and View PDF

Load training data.

load('reliabilityData.mat"')

hr

This data is a column vector of duration objects representing battery discharge times.

Create a reliability survival model, specifying the life time variable and life time units.

mdl = reliabilitySurvivalModel('LifeTimeVariable',"DischargeTime", 'LifeTimeUnit', "hour:

1-67



1 Functions — Alphabetical List

Train the survival model using the training data.
fit(mdl, reliabilityData)

Predict the life span of a new component and obtain the probability distribution function
for the estimate.

[estRUL, ciRUL,pdfRUL] = predictRUL(mdl);
Plot the probability distribution.
bar (pdfRUL.RUL, pdfRUL.ProbabilityDensity)

xlabel('Remaining useful life (hours)")
xlim(hours([40 901))
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0.02

0.01

40 45 50 55 60 65 70 75 80 85 90
Remaining useful life (hours) hr
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Improve the distribution view by providing the number of bins and bin size for the
prediction.

[estRUL,ciRUL, pdfRUL] = predictRUL(mdl, 'BinSize',0.5, 'NumBins',500);
bar(pdfRUL.RUL, pdfRUL.ProbabilityDensity)

xlabel('Remaining useful life (hours)")

xlim(hours([40 901))
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Predict the RUL for a component that has been operating for 50 hours.

[estRUL, ciRUL,pdfRUL] = predictRUL(mdl,hours(50), 'BinSize',0.5, 'NumBins',500);
bar(pdfRUL.RUL,pdfRUL.ProbabilityDensity)

xlabel('Remaining useful life (hours)")

xlim(hours([0 401))

1-69



1 Functions — Alphabetical List

1-70

DDE T T T T T T T

0.07 1 7

.06 1

0.05r 7

0.04r1 7

0,031 1

0.02r 7

0.01r b

D m 1
0 5 10 15 20 25 30 35 40

Remaining useful life (hours) hr

Input Arguments

mdl — Remaining useful life prediction model
degradation model | survival model | similarity model

Remaining useful life prediction model, specified as one of the models in the following
table.

RUL Model Groups More Information

Degradation models linearDegradationModel
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RUL Model Groups More Information

exponentialDegradationModel

Survival models reliabilitySurvivalModel

covariateSurvivalModel

Similarity models hashSimilarityModel

pairwiseSimilarityModel

residualSimilarityModel

For more information on the different model types and when to use them, see “Models for
Predicting Remaining Useful Life”.

data — Degradation feature measurements
array | table | timetable

Degradation feature profiles for estimating the RUL using similarity models, measured
over the life span of a component up to its current life time, specified as one of the
following:

* (N+1)-by-M numeric array, where N is the number of features and M is the number of
feature measurements. In each row, the first column contains the usage time and the
remaining columns contain the corresponding degradation feature measurements. The
order of the features must match the order specified in the DataVariables property
of md1.

* tableor timetable object — The table must contain variables with names that
match the strings in the DataVariables and LifeTimeVariab'le properties of mdl.

data applies when mdl is a hashSimilarityModel, pairwiseSimilarityModel, or
residualSimilarityModel, object.

bounds — Degradation feature bounds
scalar | two-column array

Degradation feature bounds, which indicate the effective life span of a component,
specified as an N-by-2 array, where N is the number of degradation features. For the ith
feature, bounds (i, 1) is the lower bound on the feature and bounds (i, 2) is the upper
bound. The order of the features must match the order specified in the DataVariables
property of mdl.
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Select bounds based on your knowledge of the allowable bounds for the degradation
features.

bounds applies when md1 is a hashSimilarityModel, pairwiseSimilarityModel,
or residualSimilarityModel object.

currentValue — Current usage time and degradation feature measurement
row vector | table | timetable

Current usage time and degradation feature measurement for estimating the remaining
useful life of degradation models, specified as one of the following:

* Row vector of the form [T X], where T is the current usage time and X is the
degradation feature measurement.

* table or timetable with one row — The table must contain variables with names
that match the strings in the DataVariables and LifeTimeVariable properties of
mdl.

currentValue applies when mdl is a linearDegradationModel or
exponentialDesgradationModel object.

threshold — Data variable threshold
scalar

Data variable threshold limits for degradation models, specified as a scalar value. The
remaining useful life is the remaining time before the forecasted response of the model
reaches the threshold value.

The sign of the Theta property of md1 indicates the direction of degradation growth. If
Theta is:

* Positive, then threshold is an upper bound on the degradation feature.
* Negative, then threshold is a lower bound on the degradation feature.

Select threshold based on your knowledge of the allowable bounds for the degradation
feature.

threshold applies when mdl is a LinearDegradationModel or
exponentialDesgradationModel object.

usageTime — Current usage time
scalar | duration object
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Current usage time of the component, specified as a scalar value or a duration object.
The units of usageTime must be compatible with the LifeTimeUnit property of md1.

covariates — Current covariate values and usage time
row vector | table with one row | timetable with one row

Current covariate values and usage time for the component, specified as a:

* Row vector whose whose first column contains the usage time. The remaining columns
specify the component covariate values only and not the life time values. The number
of covariate values must match the number and order of the covariate data columns
used when estimating md1 using fit.

* table or timetable with one row. The table must contain the variables specified in
the LifeTimeVariable, DataVariables, and CensorVariable properties of mdl.

If the covariate data contains encoded variables, then you must specify covariates
using a table or timetable.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: Alpha, 0.2 sets the prediction confidence interval to the 0.2/2to 1-0.2/2
percentile region.

Alpha — Confidence level
0.1 (default) | scalar value in the range 0 to 1

Confidence level for computing ciRUL, specified as the comma-separated pair consisting
of 'Alpha' and a scalar value in the range 0-1. predictRUL computes the confidence
interval as the Alpha/2 to 1-Alpha/2 percentile region.

NumBins — Number of bins
100 value (default) | positive integer

Number of bins used to evaluate pdfRUL, specified as the comma-separated pair

consisting of 'NumBins' and a positive integer. This argument applies when mdl is a
degradation model or survival model.
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BinSize — Bin size
1 (default) | positive scalar | duration object

Bin size used to determine the life span for computing pdfRUL, specified as the comma-
separated pair consisting of 'BinSize' and either a positive scalar or a duration
object. This argument applies when mdl is a degradation model or reliability survival
model.

Method — Survival function conversion method
‘empirical’ (default) | 'weibull’

Survival function conversion method for generating the probability density function of a
covariate survival model, specified as the comma-separated pair consisting of 'Method'
and one of the following:

* ‘'empirical' — GeneratepdfRUL by finding the gradient of the empirical cumulative
distribution function. The cumulative distribution function is 1-S(t), where S(t) is the
survival function.

* 'weibull' — Generate pdfRUL by fitting a Weibull distribution to the survival
function.

For more information on survival functions, see covariateSurvivalModel.

Output Arguments

estRUL — Estimated remaining useful life
scalar

Estimated remaining useful life of a component, returned as a scalar. The returned value
is in the units of the life time variable as indicated by the LifeTimeUnit property of mdl.

ciRUL — Confidence interval
two-element row vector

Confidence interval associated with estRUL, returned as a two-element row vector.
Specify the percentile for the confidence interval using Alpha.

pdfRUL — RUL probability density function
timetable | table
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RUL probability density function, returned as a timetab'le if the life time variable of md1l
is time-based, or as a table otherwise.

The life span used by predictRUL when computing the probability density function
depends on the type of RUL model you specify. If md1 is a:

* Degradation model, then the life span is [usageTime usageTime
+BinSize*NumBins].

* Reliability survival model, then the life span is [T T+BinSize*NumBins], where T is
the usage time specified in currentValue.

» Covariate survival model, then the life span is LTinspace(T1,T2,NumBins), where
[T1,T2] is the life range of components as determined by the
BaslineCumulativeHazard property of mdl.

» Similarity model, then the life span depends on the life spans of the nearest neighbors
found by the search algorithm. For example, if the NumNearestNeighbors property
of mdl is 10 and the 10 nearest neighbors have life times in the range of 10 months to
three years, then the histogram of failure times is found across this range.
predictRUL then fits a probability density function to the raw histogram data using a
kernel smoothing approach.

histRUL — Raw similarity scores
timetable | table

Raw similarity scores for histogram plotting, returned as a timetable if the life time
variable of mdl is time-based, or as a table otherwise. histRUL has the following
variables:

* 'RUL' — Remaining useful life values of historical components used to fit the
parameters of mdl.

* 'NormalizedDistanceScore' — Similarity scores obtained by comparing the test
component to the historical components used to fit the parameters of md1.

The histogram of the data in histRUL is the unfitted version of pdfRUL. To plot the
histogram, at the MATLAB command line, type:

bar(histRUL.RUL,histRUL.NormalizedDistanceScore)

histRUL is returned when md1 is a hashSimilarityModel,
pairwiseSimilarityModel, or residualSimilarityModel object.
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See Also
fit

Topics
“Models for Predicting Remaining Useful Life

”

Introduced in R2018a
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Read member data from an ensemble datastore

Use this function to read data from ensemble datastores for condition monitoring and
predictive maintenance.

Syntax

data = read(ensemble)
[data,info] = read(ensemble)

Description

data = read(ensemble) reads data from a member of the ensemble datastore
ensemble. The function reads the variables specified in the SelectedVariables
property of the ensemble datastore and returns them in a table row.

If the ensemble has not been read since its creation (or since it was last reset using
reset), then read reads data from the first member of the ensemble, as determined by
the software. Otherwise, read reads data from the next ensemble member. read updates
the LastMemberRead property of the ensemble to identify the most recently read
member. For more information about how ensemble datastores work, see “Data
Ensembles for Condition Monitoring and Predictive Maintenance”.

[data,info] = read(ensemble) also returns information about the location from
which the data is read and the size of the data.

Examples

Extract Subset of Stored Variables from Ensemble Member

In general, you use the read command to extract data from a
simulationEnsembleDatastore object into the MATLAB® workspace. Often, your
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ensemble contains more variables than you need to use for a particular analysis. Use the
SelectedVariables property of the simulationEnsembleDatastore object to
select a subset of variables for reading.

For this example, use the following code to create a simulationEnsembleDatastore

object using data previously generated by running a Simulink® model at a various fault

values (See generateSimulationEnsemble.). The ensemble includes simulation data

for five different values of a model parameter, ToothFaultGain. Because of the volume
of data, the unzip operation takes a few minutes.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd, 'logsout"')

ensemble =
simulationEnsembleDatastore with properties:

DataVariables: [6x1 string]

IndependentVariables: [0x0 string]

ConditionVariables: [0x0 string]

SelectedVariables: [6x1 string]
NumMembers: 5

[

LastMemberRead: [0x0 string]

The model that generated the data, TransmissionCasingSimplified, was configured
such that the resulting ensemble contains variables including accelerometer data,
Vibration, and tachometer data, Tacho. By default, the
simulationEnsembleDatastore object designates all these variables as both data
variables and selected variables, as shown in the DataVariables and
SelectedVariables properties.

ensemble.DataVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"XFinal"
"xout"

ensemble.SelectedVariables
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ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"

Suppose that for the analysis you want to do, you need only the Vibration data and the
Simulink.SimulationInput object that describes the conditions under which this
member data was simulated. Set ensemble.SelectedVariables to specify the
variables you want to read. The read command then extracts those variables from the
current ensemble member.

ensemble.SelectedVariables = ["Vibration";"SimulationInput"];
datal = read(ensemble)

datal=1Ix2 table
Vibration SimulationInput

[20202x1 timetable] [1x1 Simulink.SimulationInput]

data.Vibration is a cell array containing one timetabtle that stores the simulation
times and the corresponding vibration signal. You can now process this data as needed.
For instance, extract the vibration data from the table and plot it.

vibdatal = datal.Vibration{1l};

plot(vibdatal.Time,vibdatal.Data)
title('Vibration - First Ensemble Member')
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The next time you call read on this ensemble, the last-read member designation advances
to the next member of the ensemble. (See “Data Ensembles for Condition Monitoring and

Predictive Maintenance” for more information.) Read the selected variables from the next
member of the ensemble.

data2 = read(ensemble)

data2=1Ix2 table
Vibration SimulationInput

[20215x1 timetable] [1x1 Simulink.SimulationInput]
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To confirm that datal and data2 contain data from different ensemble members,
examine the values of the varied model parameter, ToothFaultGain. For each ensemble,
this value is stored in the Variables field of the SimulationInput variable.

datal.SimulationInput{l}.Variables

ans =
Variable with properties:

Name: 'ToothFaultGain'
Value: -2
Workspace: 'global-workspace'

data2.SimulationInput{l}.Variables

ans =
Variable with properties:

Name: 'ToothFaultGain'
Value: -1.5000
Workspace: 'global-workspace'

This result confirms that datal is from the ensemble with ToothFaultGain = -2, and
data2 is from the ensemble with ToothFaultGain = -1.5.

Read from and Write to a File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB® files, and configure it with
functions that tell the software how to read from and write to the datastore. (For more
details about configuring file ensemble datastores, see “File Ensemble Datastore With
Measured Data”.) Because of the volume of data, the unzip operation takes a few
minutes.

% Create ensmeble datastore that points to datafiles in current folder
unzip fileEnsData.zip % extract compressed files

location = pwd;

extension ".mat';

fensemble fileEnsembleDatastore(location,extension);

% Configure with functions for reading and writing variable data
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addpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Make sure functions are
fensemble.DataVariablesFcn = @readBearingData;
fensemble.WriteToMemberFcn @writeBearingData;

% Specify data and selected variables
fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.SelectedVariables = ["gs";"load"];

Read the first member of the ensemble. The functions that you assigned tell the read and
writeToLastMemberRead commands how to interact with the data files that make up
the ensemble. Thus, when you call read, it reads all the variables named in
fensemble.SelectedVariables. The read command uses @readBearingData to
read selected variables that are in fensemble.DataVariables. For this example,
@readBearingData extracts the data variables from a structure, bearing, that is stored
in the file.

data = read(fensemble)

data=1x2 table
gs load

[146484x1 double] 0

You can now process the data from the member as needed. For this example, compute the
average value of the signal stored in the variable gs. Extract the data from the table
returned by read.

gsdata
gsmean

= data.gs{1l};

= mean(gsdata);

You can write the mean value gsmean back to the data file as a new variable. To do so,
first expand the list of data variables in the ensemble to include a variable for the new
value. Call the new variable gsMean.

fensemble.DataVariables = [fensemble.DataVariables; "gsMean"]

fensemble =
fileEnsembleDatastore with properties:

DataVariablesFcn: @readBearingData

ConditionVariablesFcn: []
IndependentVariablesFcn: []
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WriteToMemberFcn: @writeBearingData
DataVariables: [5x1 string]
IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]
SelectedVariables: [2x1 string]
NumMembers: 5

LastMemberRead: '\\fs-21-ah\home$\clevy\Documents\MATLAB\examples\predmai

Next, write the derived mean value to the file corresponding to the last-read ensemble
member. (See “Data Ensembles for Condition Monitoring and Predictive Maintenance”.)
When you call writeToLastMemberRead, it uses fensemble.WriteToMemberFcn to
write the table data to the file. In this example, WriteToMemberFcn is
writeBearingData, a simple function that takes a data structure and adds it to
whatever other data is already present in the data file.

newData = struct('gsMean',gsmean);
writeTolLastMemberRead(fensemble, 'gsMean',newData);

Calling read again advances the last-read-member indictor to the next file in the ensemble
and reads the data from that file.

data = read(fensemble)

data=1x2 table
gs load

[146484x1 double] 50

You can see that this data is from a different member by examining the load variable in
the table. Here, its value is 50, while in the previously read member, it was 0.

You can repeat the processing steps to compute and append the mean for this ensemble
member. In practice, it is more useful to automate the process of reading, processing, and
writing data. To do so, reset the ensemble to a state in which no data has been read. Then
loop through the ensemble and perform the read, process, and write steps for each
member.

reset(fensemble)

while hasdata(fensemble)
data = read(fensemble);
gsdata = data.gs{1l};
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gsmean = mean(gsdata);

newData = struct('gsMean',gsmean);

writeToLastMemberRead(fensemble, 'gsMean',newData);
end

The hasdata command returns false when every member of the ensemble has been read.
Now, each data file in the ensemble includes the gsMean variable derived from the data
gs in that file. You can use techniques like this loop to extract and process data from your
ensemble files as you develop a predictive-maintenance algorithm. For an example
illustrating in more detail the use of a file ensemble datastore in the algorithm-
development process, see “Rolling Element Bearing Fault Diagnosis”.

To confirm that the derived variable is present in the file ensemble datastore, read it from
the first and second ensemble members. To do so, reset the ensemble again, and add the
new variable to the selected variables. In practice, after you have computed derived
values, it can be useful to read only those values without rereading the unprocessed data,
which can take significant space in memory. For this example, read selected variables that
include the new variable, gsMean, but do not include the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["load";"gsMean"];
datal = read(fensemble)

datal=1x2 table
load gsMean

0 [1x1 struct]

data2 = read(fensemble)

data2=1x2 table
load gsMean

50 [1x1 struct]

rmpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Reset path
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Input Arguments

ensemble — Ensemble datastore
fileEnsembleDatastore object | simulationEnsembleDatastore object

Ensemble datastore to read, specified as a:

* simulationEnsembleDatastore object.
+ fileEnsembleDatastore object.

If ensembleisa simulationEnsembleDatastore object, then read returns a table
row containing all the variables specified in ensemble.SelectedVariables.

If ensemble is a fileEnsembleDatastore object, then read uses the functions
specified in the object properties as follows. In particular, read uses:

* ensemble.DataVariablesFcn to read variables specified in both the
SelectedVariables and DataVariables properties of ensemble

+ ensemble.IndependentVariablesFcn to read variables specified in both the
SelectedVariables and IndependentVariables properties of ensemble

* ensemble.ConditionVariablesFcn to read variables specified in both the
SelectedVariables and ConditionVariables properties of ensemble

Although you can specify different functions to process the data files for these different
types of variables, read combines all the variables into one table row, data, containing
all the variables specified in ensemble.SelectedVariables. For more information
about working with file ensemble datastores, see fileEnsembleDatastore.

Output Arguments

data — Selected variables from ensemble member
table row

Selected variables from the ensemble member, returned as a table row. The table
variables are the selected variables, and the table data are the values read from the
ensemble data.

info — Data and member information
structure
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Data and ensemble member information, returned as a structure with fields:

* Size — Dimensions of the table row data, returned as a vector. For instance, if your
ensemble has four variables specified in ensemble.SelectedVariables, then
Info.Size = [1 4].

* FileName — Path to the data file corresponding to the accessed ensemble member,
returned as a string. For example, "C:\Data\Experimentl\faultl.mat". Calling
read also sets the LastMemberRead property of the ensemble to this value.

See Also

fileEnsembleDatastore | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a
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restart

Reset remaining useful life degradation model

Syntax

restart(mdl)
restart(mdl, resetPrior)
restart(__ ,Name,Value)

Description

restart(mdl) resets the internally stored statistics of the degradation process
accumulated by the previous calls to update and resets the InitialLifeTimeValue
and CurrentLifeTimeValue properties of the model. If the SlopeDetectionLevel
property of the model is not empty, then the slope test is also restarted, ignoring any
previous detections.

restart(mdl, resetPrior) sets the prior parameter values in md1 to their
corresponding posterior values when resetPrior is true.

restart( ,Name, Value) specifies properties of md1 using one or more name-value
pair arguments.

Examples

Reset Degradation Model
Load training data, which is a degradation feature profile for a component.
load('expRealTime.mat")

For this example, assume that the training data is not historical data. When there is no
historical data, you can update your degradation model in real time using observed data.
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Create an exponential degradation model with the following settings:

& prior distribution with a mean of 2.4 and a variance of 0.006

I prior distribution with a mean of 0.07 and a variance of 3e-5
* Noise variance of 0.003

mdl = exponentialDegradationModel('Theta',2.4, 'ThetaVariance',0.006, ...
'Beta',0.07, 'BetaVariance',3e-5, ...
'NoiseVariance',0.003);

Since there is no life time variable in the training data, create an arbitrary life time vector
for fitting.

lifeTime = [1l:length(expRealTime)];

Observe the degradation feature for 100 iterations. Update the degradation model after
each iteration.

for i=1:100
update(mdl, [lifeTime(i) expRealTime(i)])
end

Reset the model, which clears the accumulated statistics from the previous observations
and resets the posterior distributions to the prior distributions.

restart(mdl)

Update Exponential Degradation Model in Real Time

Load training data, which is a degradation feature profile for a component.
load('expRealTime.mat"')

For this example, assume that the training data is not historical data. When there is no
historical data, you can update your degradation model in real time using observed data.

Create an exponential degradation model with the following settings:

Arbitrary & ang # prior distributions with large variances so that the model relies
mostly on observed data
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* Noise variance of 0.003

mdl = exponentialDegradationModel('Theta',1, 'ThetaVariance',1le6, ...
'Beta', 1, 'BetaVariance',le6, ...
'NoiseVariance',0.003);

Since there is no life time variable in the training data, create an arbitrary life time vector
for fitting.

lifeTime = [1l:length(expRealTime)];

Observe the degradation feature for 10 iterations. Update the degradation model after
each iteration.

for i=1:10

update(mdl, [lifeTime(i) expRealTime(i)])
end

After observing the model for some time, for example at a steady-state operating point,
you can restart the model and save the current posterior distribution as a prior
distribution.

restart(mdl, true)
View the updated prior distribution parameters.
mdl.Prior

ans = struct with fields:
Theta: 2.3567
ThetaVariance: 0.0058

Beta: 0.0721
BetaVariance: 3.6363e-05
Rho: -0.8429

Input Arguments

mdl — Degradation RUL model
linearDegradationModel object | exponentialDegradationModel object

Degradation RUL model, specified as a LinearDegradationModel object or an
exponentialDegradationModel object. restart clears the accumulated statistics in
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mdl and resets the InitialLifeTimeValue and CurrentLifeTimeValue properties
of md1.

resetPrior — Flag for resetting prior parameter values
false (default) | true

Flag for resetting prior parameter information, specified as a logical value. When
resetPrioris:

* true, then restart sets the prior parameter values of mdl to their corresponding
current posterior parameter values. For example, md1.Prior.Theta is set to
mdl.Theta.

+ false or omitted, then restart does not update the prior.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: nvl, 'value'

Theta — Mean value of model 8 parameter
scalar

This property is read-only.

Mean value of model 6 parameter, specified as the comma-separated pair 'Theta' and a
scalar. Use this argument to set the Theta property of md1 and the corresponding field of
the Prior property of mdl.

ThetaVariance — Variance of model 8 parameter
nonnegative scalar

This property is read-only.

Variance of the 6 parameter in the degradation model, specified as the comma-separated
pair 'ThetaVariance' and a nonnegative scalar. Use this argument to set the
ThetaVariance property of md1l and the corresponding field of the Prior property of
mdl.
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Beta — Mean value of model 8 parameter
scalar

This property is read-only.

Mean value of model 8 parameter, specified as the comma-separated pair 'Beta' and a
scalar. Use this argument to set the Beta property of md1 and the corresponding field of
the Prior property of mdl.

This argument applies only when mdl is an exponentialDegradationModel.

BetaVariance — Variance of model g parameter
nonnegative scalar

This property is read-only.

Variance of model B parameter, specified as the comma-separated pair 'BetaVariance'
and a nonnegative scalar. Use this argument to set the BetaVariance property of mdl
and the corresponding field of the Prior property of mdl.

This argument applies only when mdl is an exponentialDegradationModel.

Rho — Correlation between 8 and 8
scalar value in the range [-1,1]

This property is read-only.

Correlation between 0 and S, specified as the comma-separated pair 'Rho' and a scalar
value in the range [-1,1]. Use this argument to set the Rho property of md1 and the
corresponding field of the Prior property of mdl.

This argument applies only when mdl is an exponentialDegradationModel.

NoiseVariance — Model additive noise variance
nonnegative scalar

Model additive noise variance, specified as the comma-separated pair 'NoiseVariance'
and a nonnegative scalar. Use this argument to set the NoiseVariance property of mdl.

SlopeDetectionLevel — Slope detection level
scalar value in the range [0,1] | []
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Slope detection level for determining the start of the degradation process, specified as
the comma-separated pair 'SlopeDetectionLevel' and a scalar in the range [0,1]. Use
this argument to set the SlopeDetectionLevel property of mdl.

To disable the slope detection test, set SLopeDetectionLevel to [].

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing when fitting prior values from data, specified as the
comma-separated pair 'UseParallel' and either true or false. Use this argument to
set the UseParallel property of mdl.

See Also

Functions
exponentialDegradationModel | linearDegradationModel | update

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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tfmoment

Joint moment of the time-frequency distribution of a signal

Time-frequency moments provide an efficient way to characterize signals whose
frequencies change in time (that is, are nonstationary). Such signals can arise from
machinery with degraded or failed hardware. Classical Fourier analysis cannot capture
the time-varying frequency behavior. Time-frequency distribution generated by short-time
Fourier transform (STFT) or other time-frequency analysis techniques can capture the
time-varying behavior, but directly treating these distributions as features carries a high
computational burden, and potentially introduces unrelated and undesirable feature
characteristics. In contrast, distilling the time-frequency distribution results into low-
dimension time-frequency moments provides a method for capturing the essential
features of the signal in a much smaller data package. Using these moments significantly
reduces the computational burden for feature extraction and comparison — a key benefit
for real-time operation [1], [2].

The Predictive Maintenance Toolbox™ implements the three branches of time-frequency
moment:

* Conditional spectral moment — tfsmoment

* Conditional temporal moment — tftmoment

* Joint time-frequency moment — tfmoment

Syntax

moment] = tfmoment(xt,order)

moment] = tfmoment(x,fs,order)

moment] = tfmoment(x,ts,order)

moment] = tfmoment(p, fp,tp,order)
(_

moment] = tfmoment ,Name, Value)

Description

moment] = tfmoment(xt,order) returns the “Joint Time-Frequency Moments” on
page 1-101 of timetable xt as a vector with one or more components. Each momentJ]
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scalar element represents the joint moment for one of the orders you specify in order.
The data in xt can be nonuniformly sampled.

momentJ = tfmoment(x, fs,order) returns the joint time-frequency moment of time-
series vector x, sampled at rate Fs. The moment is returned as a vector, in which each
scalar element represents the joint moment corresponding to one of the orders you
specify in order. With this syntax, x must be uniformly sampled.

momentJ = tfmoment(x,ts,order) returns the joint time-frequency moment of x
sampled at the time instants specified by ts in seconds.

+ Iftsisascalar duration, then tfmoment applies it uniformly to all samples.

« If tsis avector, then tfmoment applies each element to the corresponding sample in
X. Use this syntax for nonuniform sampling.

moment]J = tfmoment(p, fp,tp,order) returns the joint time-frequency moment of a
signal whose power spectrogram is p. fp contains the frequencies corresponding to the
spectral estimate contained in p. tp contains the vector of time instants corresponding to
the centers of the windowed segments used to compute short-time power spectrum
estimates. Use this syntax when:

* You already have the power spectrogram you want to use.

* You want to customize the options for pspectrum, rather than accept the default
pspectrum options that tfmoment applies. Use pspectrum first with the options you
want, and then use the output p as input for tfmoment. This approach also allows you
to plot the power spectrogram.

momentJ = tfmoment ( ,Name, Value) specifies additional properties using name-
value pair arguments. Options include moment centralization, frequency-limit
specification, and time-limit specification.

You can use Name, Value with any of the input-argument combinations in previous
syntaxes.

Examples
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Find the Joint Time-Frequency Moments of a Time Series

Find the joint time-frequency moments of a time series using multiple moment
specifications. Compute the same moment using a specified power spectrogram input.

This example is adapted from “Rolling Element Bearing Fault Diagnosis”, which provides
a more comprehensive treatment of the data sources and history.

Load the data, which contains vibration measurements for a faulty machine. x_innerl
and sr_innerl contain the data vector and sample rate.

load tfmoment data.mat x innerl sr_innerl

Examine the data. Construct a time vector from the sample rate, and plot the data. Then
zoom in to an 0.1 s section so that the behavior can be seen more clearly.

t innerl = (0:length(x_innerl)-1)/sr _innerl; % Construct time vector of [0 1/sr 2/sr .
figure

plot(t innerl,x innerl)

title ('Innerl Signal')

hold on

x1im([0 0.1]) % Zoom in to an 0.1 s section
hold off
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The plot shows periodic impulsive variations in the acceleration measurements over time.
Find the joint moment of second order for both time and frequency

order = [2,2];
moment]J = tfmoment(x_innerl,sr _innerl,order)

moment] = 3.6261e+08
The resulting moment has only one element, representing the [2,2] time-frequency pair.

Now include the fourth moment for time and frequency. You can also mix orders within a
pair. Include a joint moment with a second order for time and a fourth order for
frequency. The order matrix contains two columns — the first for time and the second for
frequency. Each row contains the order pair to compute.



tfmoment

order = [2,2;2,4;4,4];
moment]J = tfmoment(x _innerl,t innerl,order);
momentJ(1)

ans = 3.6261e+08
momentJ(2)
ans = 7.9513e+16
momentJ(3)
ans = 4.0896e+17

You can also take the moment using an existing spectrogram. Load the data for a
spectrogram which was computed using the same signal and default options. Input this to
tfmoment, using the 3-row order matrix already computed.

load tfmoment data.mat p_innerl def f p def t p def
moment]J = tfmoment(p_innerl def,f p def,t p def,order);
momentJ(1)

ans = 3.6261e+08
momentJ(2)
ans = 7.9513e+16
momentJ(3)
ans = 4.0896e+17

The joint moments distill a large amount of time and frequency data into a small set of
single data points. They represent important, and concise, features that you can use in
multiple ways in your application. Possibilities include comparison with health-regime
limits and computing moments of segmented data over a period of time to assess long-
term degradation.

Input Arguments

xt — Time-series signal
timetable

Time-series signal for which tfmoment returns the moments, specified as a timetable
that contains a single variable with a single column. xt must contain increasing, finite
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row times. If the timetable has missing or duplicate time points, you can fix it using the
tips in “Clean Timetable with Missing, Duplicate, or Nonuniform Times” (MATLAB). xt
can be nonuniformly sampled, with the pspectrum constraint that the median time
interval and the mean time interval must obey:

1 < Median time interval <100.

100 Mean time interval

order — Moment orders to return
positive integer matrix

Moment orders to return, specified as an n-by-2 matrix with real positive integers.

» The first column provides the orders of time.

* The second column provides the orders of frequency.

Example: moment] = tfmoment(x, [2,2]) specifies the second-order joint moment
(variance) of the time-frequency distribution of x.

Example: moment] = tfmoment(x,[2,2;4,4]) specifies the second and fourth
moment orders for both time and frequency of the time-frequency distribution of x.

You can specify any order and number of orders, but low-order moments carry less
computational burden and are better suited to real-time applications. You can also use a
different order for time than you use for frequency. The first four moment orders
correspond to the statistical moments of a data set:

Mean

Variance

Skewness (degree of asymmetry about the mean)

D W N =

Kurtosis (length of outlier tails in the distribution — a normal distribution has a
kurtosis of 3)

For an example, see “Find the Joint Time-Frequency Moments of a Time Series” on page
1-94.

x — Time-series signal
vector

Time-series signal from which tfmoment returns the moments, specified as a vector.
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For an example of a time-series input, see “Find the Joint Time-Frequency Moments of a
Time Series” on page 1-94.

fs — Sample rate
positive scalar

Sample rate of x, specified as positive scalar in hertz when X is uniformly sampled.

ts — Sample-time values
duration scalar | vector | duration vector | datetime vector

Sample-time values, specified as one of the following:

* duration scalar — time interval between consecutive samples of X.

* Vector, duration array, or datetime array — time instant or duration corresponding
to each element of x.

ts can be nonuniform, with the pspectrum constraint that the median time interval and
the mean time interval must obey:

1 Median time interval <

= 100.
100 Mean time interval

p — Power spectrogram or spectrum of signal
matrix | vector

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a
column vector (spectrum). p contains an estimate of the short-term, time-localized power
spectrum of a time-series signal. If you specify p, then tfmoment uses p rather than
generate its own power spectrogram. For an example, see “Find the Joint Time-Frequency
Moments of a Time Series” on page 1-94.

fp — Frequencies for p
vector

Frequencies for power spectrogram or spectrum p when p is supplied explicitly to
tfmoment, specified as a vector in hertz. The length of fp must be equal to the number of
Tows in p.

tp — Time information for p
vector | duration vector | datetime vector | duration scalar
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Time information for power spectrogram or spectrum p when p is supplied explicitly to
tfmoment, specified as one of the following:

* Vector of time points, whose data type can be numeric, duration, or datetime. The
length of vector tp must be equal to the number of columns in p.

* duration scalar that represents the time interval in p. The scalar form of tp can be
used only when p is a power spectrogram matrix.

» For the special case where p is a column vector (power spectrum), tp can be a
numeric, duration, or datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Centralize', false, 'FrequencyLimits',[10 100] computes the joint
time-frequency moment for the portion of the signal ranging from 10 Hz to 100 Hz.

Centralize — Centralize-moment option
true (default) | false

Centralize-moment option, specified as the comma-separated pair consisting of
'Centralize' and a logical.

 IfCentralizeis true, then tfmoment returns the centralized conditional moment
by subtracting the conditional mean (which is the first moment) in the computation.

o IfCentralizeis false, then tfmoment returns the noncentralized moment,
preserving any data offset.

Example: moment] = tfmoment(x,[2,2], 'Centralize’', false).

FrequencylLimits — Frequency limits
full frequency band (default) | [f1 2]

Frequency limits to use, specified as the comma-separated pair consisting of
'FrequencyLimits' and a two-element vector containing lower and upper bounds f1
and f2 in hertz. This specification allows you to exclude a band of data at either end of the
spectral range.
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TimeLimits — Time Limits
full time band (default) | [t1 t2]

Time limits, specified as the comma-separated pair consisting of 'TimeLimits' and a
two-element vector containing lower and upper bounds t1 and t2 in the same units as ts,
and of the data types:

* Numeric or duration when fs or a scalar ts are specified, or when ts is a single,
double, or duration vector

* Numeric, duration, or datetime when ts is specified as a datetime vector

This specification allows you to extract a temporal section of data from a longer data set.

Output Arguments

momentJ — Conditional joint moment
vector

Conditional joint moment returned as a vector, the scalar elements of which each
represents the joint moment of one of the specified time-frequency order pairs.

momentJ is always a vector, regardless of whether the input data is timetable xt, time-
series vector X, or spectrogram data p.

Definitions

Joint Time-Frequency Moments

The joint time-frequency moments of a nonstationary signal comprise a set of time-
varying parameters that characterize the signal spectrum as it evolves in time. They are
related to the conditional temporal moments and the joint time-frequency moments. The
joint time-frequency moment is an integral function of frequency, given time, and
marginal distribution. The conditional temporal moment is an integral function of time,
given frequency, and marginal distribution. The calculation of the joint time-frequency
moment is a double integral that varies both time and frequency [1], [2].

Each moment is associated with a specific order, with the first four orders being the
statistical properties of 1) mean, 2) variance, 3) skewness, and 4) kurtosis.
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tfmoment computes the joint time-frequency moments of the time-frequency distribution
for a signal x, for the orders specified in order. The function performs these steps:

1 Compute the spectrogram power spectrum, P(t,f), of the input using the pspectrum
function and uses it as a time-frequency distribution. If the syntax used supplies an
existing P(t,f), then tfmoment uses that instead.

2 [ a)m>
Estimate the joint time-frequency moment \ of the signal using, for the
noncentralized case:

n,_m \ _ n._.m
<t o™ )= ”t o™ P(t,0)dtdo,
where m is the order and P(t) is the marginal distribution.

. e W (t) .

For the centralized joint time-frequency moment “* , the function uses

n,m _ 1 _ /41 " ypnt i
[T (¢)= —P(w)jj(t <t >w) (a) <a) >t) P(t,0)dtdo,

)y g 1
where o and ¢t are the first temporal and spectral time-frequency moments.
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Conditional spectral moment of the time-frequency distribution of a signal

Time-frequency moments provide an efficient way to characterize signals whose
frequencies change in time (that is, are nonstationary). Such signals can arise from
machinery with degraded or failed hardware. Classical Fourier analysis cannot capture
the time-varying frequency behavior. Time-frequency distribution generated by short-time
Fourier transform (STFT) or other time-frequency analysis techniques can capture the
time-varying behavior, but directly treating these distributions as features carries a high
computational burden, and potentially introduces unrelated and undesirable feature
characteristics. In contrast, distilling the time-frequency distribution results into low-
dimension time-frequency moments provides a method for capturing the essential
features of the signal in a much smaller data package. Using these moments significantly
reduces the computational burden for feature extraction and comparison — a key benefit
for real-time operation [1], [2].

The Predictive Maintenance Toolbox implements the three branches of time-frequency
moment:

* Conditional spectral moment — tfsmoment

* Conditional temporal moment — tftmoment

* Joint time-frequency moment — tfmoment

Syntax

momentS = tfsmoment(xt,order)
momentS = tfsmoment(x, fs,order)
momentS = tfsmoment(x,ts,order)
momentS = tfsmoment(p, fp,tp,order)
momentS = tfsmoment(  ,Name,Value)
[momentS,t] = tfsmoment( )
tfsmoment( )
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Description

momentS = tfsmoment(xt,order) returns the conditional spectral moment on page 1-
126 of timetable xt as a timetable. The momentS variables provide the spectral
moments for the orders you specify in order. The data in xt can be nonuniformly
sampled.

momentS = tfsmoment(x,fs,order) returns the conditional spectral moment of time-
series vector x, sampled at rate Fs. The moment is returned as a matrix, in which each
column represents a spectral moment corresponding each element in order. With this
syntax, x must be uniformly sampled.

momentS = tfsmoment(x,ts,order) returnsthe conditional spectral moment of x
sampled at the time instants specified by ts in seconds.

+ Iftsisascalar duration, then tfsmoment applies it uniformly to all samples.

« If tsis avector, then tfsmoment applies each element to the corresponding sample in
x. Use this syntax for nonuniform sampling.

momentS = tfsmoment(p,fp,tp,order) returns the conditional spectral moment of
a signal whose power spectrogram is p. fp contains the frequencies corresponding to the
spectral estimate contained in p. tp contains the vector of time instants corresponding to
the centers of the windowed segments used to compute short-time power spectrum
estimates. Use this syntax when:

*  You already have the power spectrum or spectrogram you want to use.

* You want to customize the options for pspectrum, rather than accept the default
pspectrum options that tfsmoment applies. Use pspectrum first with the options
you want, and then use the output p as input for tfsmoment. This approach also
allows you to plot the power spectrogram.

momentS = tfsmoment( ,Name, Value) specifies additional properties using
name-value pair arguments. Options include moment centralization and frequency-limit
specification.

You can use Name, Value with any of the input-argument combinations in previous
syntaxes.
[momentS,t] = tfsmoment( ) returns time vector t.

You can use t with any of the input-argument combinations in previous syntaxes.
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tfsmoment ( ) with no output arguments plots the conditional spectral moment. The
plot x-axis is time, and the plot y-axis is the corresponding spectral moment.

You can use this syntax with any of the input-argument combinations in previous
syntaxes.

Examples

Plot the Conditional Spectral Moment of a Time Series Vector

Plot the second-order conditional spectral moment (variance) of a time series using the
plot-only approach and the return-data approach. Visualize the moment differently by
plotting the histogram. Compare the moments for data arising from faulty and healthy
machine conditions.

This example is adapted from “Rolling Element Bearing Fault Diagnosis”, which provides
a more comprehensive treatment of the data sources and history.

Load the data, which contains vibration measurements for two conditions. x_innerl and
sr_innerl contain the data vector and sample rate for a faulty condition. x_baseline
and sr_baseline contain the data vector and sample rate for a healthy condition.

load tfmoment data.mat x innerl sr innerl x baselinel sr baselinel

Examine the faulty-condition data. Construct a time vector from the sample rate, and plot
the data. Then zoom in to an 0.1-s section so that the behavior can be seen more clearly.

t innerl = (0:length(x_innerl)-1)/sr _innerl; % Construct time vector of [0 1/sr 2/sr .
figure

plot(t _innerl,x innerl)

title ('Innerl Signal')

hold on

x1im([0 0.1]) % Zoom in to an 0.1 s section
hold off
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The plot shows periodic impulsive variations in the acceleration measurements over time.

Plot the second spectral moment (order=2), using the tfsmoment syntax with no output

arguments.
order = 2;
figure

tfsmoment(x _innerl,t innerl,order)
title('Second Spectral Moment of Innerl')
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5 (L)

6 X 107 Second Spectral Moment of Inner1
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The plot illustrates the changes in the variance of the x _innerl spectrum over time. You
are limited to this visualization (moment versus time) because tfsmoment returned no
data. Now use tfmoment again to compute the second spectral moment, this time using
the syntax that returns both the moment values and the associated time vector. You can
use the sample rate directly in the syntax (sr_inner1l), rather than the time vector you
constructed (t_innerl).

[momentS _innerl,tl innerl] = tfsmoment(x innerl,sr _innerl,order);

You can now plot moment versus time as you did before, using moment innerl and

t1l innerl, with the same result as earlier. But you can also perform additional analysis
and visualization of the moment vector, since tfsmoment returned the data. A histogram
can provide concise information on the signal characteristics.
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figure
histogram(momentS innerl)
title('Second Spectral Moment of Innerl')

Second Spectral Moment of Inner1

1 2 3 4 5 i
«107

On its own, the histogram does not reveal obvious fault information. However, you can
compare it to the histogram produced by the healthy-condition data.

First, compare the inner and baseline time series directly using the same time-vector
construction for the baselinel data as previously for the innerl data.

t baselinel = (0:length(x _baselinel)-1)/sr baselinel;

figure
plot(t innerl,x innerl)
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hold on

plot(t baselinel,x baselinel)

hold off

legend('Faulty Condition', 'Healthy Condition')

title('Vibration versus Time for Faulty and Healthy Conditions')

Vibration versus Time for Faulty and Healthy Conditions

40 T T T T T

Faulty Condition
30 r Healthy Condition |
2{'_ -

—Eﬂ i i i i i

Calculate the second spectral moment of the baselinel data. Compare the baselinel
and inner1l time histories.

[momentS baselinel,tl baselinel] = tfsmoment(x baselinel,sr baselinel,2);
figure

plot(tl innerl,momentS innerl)
hold on
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plot(tl baselinel,momentS baselinel)

hold off

legend('Faulty Condition', 'Healthy Condition')

title('Second Spectral Moment versus Time for Faulty and Healthy Conditions')

SecondSpectral Moment versus Time for Faulty and Healthy Conditions
'1 B T T T T T

:j i,fl’trw' ”p JI': |||\J '\i”"'llﬂ \,*l | , Jl(n Hr I[*.U ll | F I:::i %TE{:HI:H" -
j"k' “H‘Jl | 'l I JJ‘ ol ‘ll |1| r 1"M
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The moment plot shows behavior different from the earlier vibration plot. The vibration
data for the faulty case is much noisier with higher-magnitude spikes than for the healthy
case, although both appear to be zero mean. However, the spectral variance (second
spectral moment) is significantly lower for the faulty case. The moment of the faulty case
is still more noisy than the healthy case.

Plot the histograms.
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figure

histogram(momentS innerl);

hold on

histogram(momentS baselinel);

hold off

legend('Faulty Condition', 'Healthy Condition')

title('Second Spectral Moment for Faulty and Healthy Conditions')

Second Spectral Moment for Faulty and Healthy Conditions
T T T T T T T T . T
[ Fautty Condition

[ IHealthy Condition | -
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The moment behaviors distinguish the faulty condition from the healthy condition in both
plots. The histogram provides distinct distribution characteristics — center point along x-
axis, spread, and peak histogram bin.
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Determine Multiple Orders of Conditional Spectral Moment for a Time Series

Determine the first four conditional spectral moments of a time-series data set, and
extract the moments that you want to visualize with a histogram.

Load the data, which contains vibration measurements (x_inner1l) and sample
rate(sr_innerl) for machinery. Then use tfsmoment to compute the first four moments.
These moments represent the statistical quantities of: 1) Mean; 2) Variance; 3) Skewness;
and 4) Kurtosis.

You can specify the moment designators as a vector within the order argument.

load tfmoment data.mat x innerl sr innerl
momentS innerl = tfsmoment(x innerl,sr innerl,[1 2 3 4]);

Compare the dimensions of the input vector and the output matrix.
xsize = size(x_innerl)
xsize = 1Ix2

146484 1

msize size(momentS innerl)

msize = 1Ix2

524 4

The data vector x_inner is considerably longer than the vectors in the moment matrix
momentS innerl because the spectrogram computation produces
optimally-sized lower-resolution time windows. In this case,
tfsmoment returns a moment matrix containing four columns, one column for each
moment order.

Plot the histograms for the third (skewness) and fourth (kurtosis) moments. The third and
fourth columns of momentS_innerl provide these.

momentS 3 = momentS _innerl(:,3);
momentS 4 = momentS _innerl(:,4);
figure

histogram(momentS 3)
title('Third Spectral Moment (Skewness) of x innerl')
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Third Spectral Moment (Skewness) of x inner1

120 —

100
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x 101
figure

histogram(momentS 4)
title('Fourth Spectral Moment (Kurtosis) of x innerl')
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20 Fourth Spectral Moment (Kurtosis) of x inner1
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100
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The plots are similar, but each has some unique characteristics with respect to number of
bins and slope steepness.

Use a Customized Power Spectrogram to Compute the Conditional Spectral
Moment

By default, tfsmoment calls the function pspectrum internally to generate the power
spectrogram that tfsmoment uses for the moment computation. You can also import an
existing power spectrogram for tfsmoment to use instead. This capability is useful if you
already have a power spectrogram as a starting point, or if you want to customize the
pspectrum options by generating the spectrogram explicitly first.
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Input a power spectrogram that has been generated with customized options. Compare
the resulting spectral-moment histogram with one that tfsmoment generates using its
pspectrum default options.

Load the data, which includes two power spectrums and the associated frequency and
time vectors.

The p_innerl def spectrum was created using the default pspectrum options. It is
equivalent to what tfsmoment computes internally when an input spectrum is not
provided in the syntax.

The p_innerl MinThr spectrum was created using the MinThreshold pspectrum
option. This option puts a lower bound on nonzero values to screen out low-level noise.
For this example, the threshold was set to screen out noise below the 0.5% level.

load tfmoment data.mat p innerl def f p def t p def ...
p_innerl MinThr f p MinThr t p MinThr
load tfmoment data.mat x _innerl x baselinel

Determine the second spectral moments (variance) for both cases.

moment p def = tfsmoment(p innerl def,f p def,t p def,2);
moment p MinThr = tfsmoment(p innerl MinThr,f p MinThr,t p MinThr,2);

Plot the histograms together.

figure

histogram(moment p def);

hold on

histogram(moment p MinThr);

hold off

legend('Moment from Default P', 'Moment from Customized P')
title('Second Spectral Moment for Innerl from Input Spectrograms')
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Second Spectral Moment for Inner1 from Input Spectrograms
120 . . . . . .

[ Moment fram Default P
[ IMoment fram Customized P

100
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The histograms have the same overall spread, but the thresholded moment histogram has
a higher peak bin at a lower moment magnitude level than the default moment. This
example is for illustration purposes only, but does show the impact that preprocessing in
the spectrum computation stage can have.

Calculate a Conditional Spectral Moment that is not Centralized

By default, tfsmoment centralizes the moment as part of its calculation. That is, it
subtracts the sensor-data mean (which is the first moment) from the sensor data as part
of the “Conditional Spectral Moments” on page 1-126. If you wish to preserve the offset,
you can set the input argument Centralize to false.
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Load the data, which contains vibration measurements x and sample rate sr for
machinery. Calculate the 2nd moment (order = 2) both with centralization (default), and
without centralization (Centralize = false). Plot the histograms together.

load tfmoment data.mat x innerl sr_innerl
momentS centr = tfsmoment(x innerl,sr _innerl,2);
momentS_nocentr = tfsmoment(x_innerl,sr innerl,2, 'Centralize’',false);

figure

histogram(momentS centr)

hold on

histogram(momentS nocentr);

hold off

legend('Centralized', 'Noncentralized"')

title('Second Spectral Moment of x innerl With and Without Centralization')
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Second Spectral Moment of x inner1 With and Without Centralization
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The noncentralized distribution is offset to the right.

Find the Conditional Spectral Moments of Data Measurements in a Timetable

Real-world measurements often come packaged as part of a time-stamped table that
records actual time and readings rather than relative times. You can use the timetable
format for capturing this data. This example shows how tfsmoment operates with a
timetable input, in contrast to the data vector inputs used for the other tfsmoment
examples, such as “Plot the Conditional Spectral Moment of a Time Series Vector” on
page 1-105.
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Load the data, which consists of a single timetable xt_innerl containing
measurement readings and time information for a piece of machinery. Examine the

properties of the timetable.

load tfmoment tdata.mat xt innerl;
xt_innerl.Properties

ans = struct with fields:
Description:
UserData:
DimensionNames:
VariableNames:
VariableDescriptions:
VariableUnits:
VariableContinuity:
RowTimes:

]

[

{'Time' 'Variables'}
{'x innerl'}

{}

{}

[]
[146484x1 duration]

This table consists of dimensions Time and the Variables, where the only variable is
X_innerl.

Find the second and fourth conditional spectral moments for the data in the timetable.

Examine the properties of the resulting moment timetable.

order = [2 4];
momentS xt innerl = tfsmoment(xt innerl,order);
momentS xt innerl.Properties

ans

= struct with fields:
Description:
UserData:
DimensionNames:
VariableNames:
VariableDescriptions:
VariableUnits:
VariableContinuity:
RowTimes:

[]

{'Time' 'Variables'}
{'CentralSpectralMoment2'
{}

{}

[]

[524x1 duration]

'CentralSpectralMoment4'}

The returned timetable represents the moments in the variable
'‘CentralSpectralMoment?2' and 'CentralSpectralMoment4’, providing information
not only on what specific moment was calculated, but whether it was centralized.

You can access the time and moment information directly from the timetable
properties. Compute the second and fourth moments. Plot the fourth moment.
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tt innerl = momentS xt innerl.Time;
momentS innerl 2 = momentS xt innerl.CentralSpectralMoment2;
momentS innerl 4 = momentS xt innerl.CentralSpectralMoment4;

figure
plot(tt innerl,momentS innerl 4)
title('Fourth Spectral Moment of Timetable Data')

1018 Fourth Spectral Moment of Timetable Data
E T T T T T T

As is illustrated in “Plot the Conditional Spectral Moment of a Time Series Vector” on
page 1-105, a histogram is a very useful visualization for moment data. Plot the
histogram, directly referencing the CentralSpectralMoment2 variable property.
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figure
histogram(momentS xt innerl.CentralSpectralMoment2)
title('Second Spectral Moment of xt innerl Timetable')

Second Spectral Moment of xt inner1 Timetable

Input Arguments

xt — Signal Timetable
timetable

Signal Timetable for which tfsmoment returns the moments, specified as a timetable
that contains a single variable with a single column. xt must contain increasing, finite
row times. If the timetable has missing or duplicate time points, you can fix it using the
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tips in “Clean Timetable with Missing, Duplicate, or Nonuniform Times” (MATLAB). xt
can be nonuniformly sampled, with the pspectrum constraint that the median time
interval and the mean time interval must obey.

L < Median time interval <100.

100 Mean time interval

For an example of timetable input, see “Find the Conditional Spectral Moments of Data
Measurements in a Timetable” on page 1-118

order — Moment orders to return
integer scalar | integer vector

Moment orders to return, specified as one of the following:

* Integer — Compute one moment

* Vector — Compute multiple moments at once.

Example: momentS = tfsmoment(x,2) specifies the second-order spectral moment
(variance) of the time-frequency distribution of x.

Example: momentS = tfsmoment(x,[1 2 3 4]) specifies the first four moment orders
of the time-frequency distribution of x.

You can specify any order and number of orders, but low-order moments carry less
computational burden and are better suited to real-time applications. The first four
moment orders correspond to the statistical moments of a data set:

Mean

Variance

Skewness (degree of asymmetry about the mean)

D W N R

Kurtosis (length of outlier tails in the distribution — a normal distribution has a
kurtosis of 3)

For examples, see:

* Timetable data input — “Find the Conditional Spectral Moments of Data
Measurements in a Timetable” on page 1-118

* Time-series vector data input — “Determine Multiple Orders of Conditional Spectral
Moment for a Time Series” on page 1-111
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x — Time-series signal
vector

Time-series signal from which tfsmoment returns the moments, specified as a vector.

For an example of a time-series input, see “Plot the Conditional Spectral Moment of a
Time Series Vector” on page 1-105

fs — Sample rate
positive scalar

Sample rate of x, specified as positive scalar in hertz when x is uniformly sampled.

ts — Sample-time values
duration scalar | vector | duration vector | datetime vector

Sample-time values, specified as one of the following:

* duration scalar — time interval between consecutive samples of X.

* Vector, duration array, or datetime array — time instant or duration corresponding
to each element of x.

ts can be nonuniform, with the pspectrum constraint that the median time interval and
the mean time interval must obey:

1 < Median time interval

- . : <100.
100 Mean time interval

p — Power spectrogram or spectrum of signal
vector | matrix

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a
column vector (spectrum). p contains an estimate of the short-term, time-localized power
spectrum of a time-series signal. If you specify p, tfsmoment uses p rather than generate
its own power spectrogram. For an example, see “Use a Customized Power Spectrogram
to Compute the Conditional Spectral Moment” on page 1-114.

fp — Frequencies for p
vector
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Frequencies for power spectrogram or spectrum p when p is supplied explicitly to
tfsmoment, specified as a vector in hertz. The length of fp must be equal to the number
of rows in p.

tp — Time information for p
vector | duration vector | datetime vector | duration scalar

Time information for power spectrogram or spectrum p when p is supplied explicitly to
tfsmoment, specified as one of the following:

* Vector of time points, whose data type can be numeric, duration, or datetime. The
length of vector tp must be equal to the number of columns in p.

* duration scalar that represents the time interval in p. The scalar form of tp can be
used only when p is a power spectrogram matrix.

» For the special case where p is a column vector (power spectrum), tp can be a
numeric, duration, or datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Centralize', false, 'FrequencyLimits',[10 100] computes the
noncentralized conditional spectral moment for the portion of the signal ranging from 10
Hz to 100 Hz.

Centralize — Centralize-moment option
true (default) | false

Centralize-moment option, specified as the comma-separated pair consisting of
'Centralize' and a logical.

o« IfCentralizeis true, then tfsmoment returns the centralized conditional moment
by subtracting the conditional mean (which is the first moment) in the computation.

 IfCentralizeis false, then tfsmoment returns the noncentralized moment,
preserving any data offset.

For an example, see “Calculate a Conditional Spectral Moment that is not Centralized” on
page 1-116.
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FrequencyLimits — Frequency limits
full frequency band (default) | [f1 f2]

Frequency limits to use, specified as the comma-separated pair consisting of
'FrequencyLimits' and a two-element vector containing lower and upper bounds f1
and f2 in hertz. This specification allows you to exclude a band of data at either end of the
spectral range.

Output Arguments

momentS — Conditional spectral moment
timetable array | matrix

Conditional spectral moment returned as a timetable or a matrix.

* Ifyouuse timetable data xt, then momentS is a timetable array, containing
variables which are the spectral moments for the orders specified in order. For an
example, see “Find the Conditional Spectral Moments of Data Measurements in a
Timetable” on page 1-118.

* Ifyou use vector data X, or spectrogram data p, then momentsS is an array whose
columns represent the spectral moments. For an example, see “Determine Multiple
Orders of Conditional Spectral Moment for a Time Series” on page 1-111.

t — Times of moment estimates
double vector

Times of moment estimates in seconds. t results from the time windowing that the
internal spectrogram computation computes. The spectrogram windows require less time
resolution than the original sample vector. Therefore, the returned t vector is more
compact than the input data vectors, as is momentS. If time information has been
provided by sample rate or sample time,t starts from the center of the first time window.
If time information has been provided in duration or datetime format, t preserves the
start-time offset.
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Definitions

Conditional Spectral Moments

The conditional spectral moments of a nonstationary signal comprise a set of time-varying
parameters that characterize the signal spectrum as it evolves in time. They are related to
the conditional temporal moments and the joint time-frequency moments. The conditional
spectral moment is an integral function of frequency, given time, and marginal
distribution. The conditional temporal moment is an integral function of time, given
frequency, and marginal distribution. The calculation of the joint time-frequency moment
is a double integral that varies both time and frequency [1], [2].

Each moment is associated with a specific order, with the first four orders being the
statistical properties of 1) mean, 2) variance, 3) skewness, and 4) kurtosis.

tfsmoment computes the conditional spectral moments of the time-frequency
distribution for a signal x, for the orders specified in order. The function performs these
steps:

1 Compute the spectrogram power spectrum, P(t,f), of the input using the pspectrum
function and uses it as a time-frequency distribution. If the syntax used supplies an
existing P(t,f), then tfsmoment uses that instead.

2 /wm>
Estimate the conditional spectral moment \
noncentralized case:

¢t of the signal using, for the

m 1 m
=—— P(t,w)d
<co >t p(t).[w (t,0)do,
where m is the order and P(t) is the marginal distribution.

m
For the centralized conditional spectral moment Ho (t) , the function uses

uy (t) =ﬁj(a}—<wl>t )mP(t,w)dw.
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Conditional temporal moment of the time-frequency distribution of a signal

Time-frequency moments provide an efficient way to characterize signals whose
frequencies change in time (that is, are nonstationary). Such signals can arise from
machinery with degraded or failed hardware. Classical Fourier analysis cannot capture
the time-varying frequency behavior. Time-frequency distribution generated by short-time
Fourier transform (STFT) or other time-frequency analysis techniques can capture the
time-varying behavior, but directly treating these distributions as features carries a high
computational burden, and potentially introduces unrelated and undesirable feature
characteristics. In contrast, distilling the time-frequency distribution results into low-
dimension time-frequency moments provides a method for capturing the essential
features of the signal in a much smaller data package. Using these moments significantly
reduces the computational burden for feature extraction and comparison — a key benefit
for real-time operation [1], [2].

The Predictive Maintenance Toolboximplements the three branches of time-frequency
moment:

* Conditional spectral moment — tfsmoment

* Conditional temporal moment — tftmoment

* Joint time-frequency moment — tfmoment

Syntax

momentT = tftmoment(xt,order)
momentT = tftmoment(x, fs,order)
momentT = tftmoment(x,ts,order)
momentT = tftmoment(p, fp,tp,order)
momentT = tftmoment( _ ,Name,Value)

[momentT,f] = tftmoment( )

tftmoment( )
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Description

momentT = tftmoment(xt,order) returns the conditional temporal moment on page
1-143 of timetable xt as a matrix. The momentT variables provide the temporal
moments for the orders you specify in order. The data in xt can be nonuniformly
sampled.

momentT = tftmoment(x,fs,order) returns the conditional temporal moment of
time-series vector x, sampled at rate fs. The moment is returned as a matrix, in which
each column represents a temporal moment corresponding to each element in order.
With this syntax, x must be uniformly sampled.

momentT = tftmoment(x,ts,order) returns the conditional temporal moment of x
sampled at the time instants specified by ts in seconds.

» Iftsisascalar duration, then tftmoment applies it uniformly to all samples.

+ If tsis avector, then tftmoment applies each element to the corresponding sample in
x. Use this syntax for nonuniform sampling.

momentT = tftmoment(p, fp,tp,order) returns the conditional temporal moment of
a signal whose power spectrogram is p. fp contains the frequencies corresponding to the
temporal estimate contained in p. tp contains the vector of time instants corresponding
to the centers of the windowed segments used to compute short-time power spectrum
estimates. Use this syntax when:

* You already have the power spectrogram you want to use.

* You want to customize the options for pspectrum, rather than accept the default
pspectrum options that tftmoment applies. Use pspectrum first with the options
you want, and then use the output p as input for tftmoment. This approach also
allows you to plot the power spectrogram.

momentT = tftmoment( ,Name, Value) specifies additional properties using
name-value pair arguments. Options include moment centralization and time-limit
specification.

You can use Name, Value with any of the input-argument combinations in previous
syntaxes.

[momentT,f] = tftmoment( ) returns the frequency vector f associated with the
moment matrix in momentT.
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You can use f with any of the input-argument combinations in previous syntaxes.

tftmoment ( ) with no output arguments plots the conditional temporal moment. The
plot x-axis is frequency, and the plot y-axis is the corresponding temporal moment.

You can use this syntax with any of the input-argument combinations in previous
syntaxes.

Examples

Plot the Conditional Temporal Moments of a Time Series Vector

Plot the conditional temporal moments of a time series using a plot-only approach and a
return-data approach.

Load and plot the data, which consists of simulated vibration measurements for a system
with a fault that causes periodic resonances. x is the vector of measurements, and fs is
the sampling frequency.

load tftmoment example x fs

ts=0:1/fs: (length(x)-1)/fs;

figure

subplot(1,2,1)

plot(ts,x)

xlabel('Time in Seconds')
ylabel('Measurement')

title('Simulated Vibration Measurements')

Use the function pspectrum with the 'spectrogram' option to show the frequency content
versus time.

subplot(1,2,2)
pspectrum(x,ts, 'spectrogram')
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The spectrogram shows that the first burst is at 100 Hz, and the second burst is at 300
Hz. The 300-Hz burst is stronger than the 100-Hz burst by 70 dB.

Plot the second temporal moment (variance), using the plot-only approach with no output
arguments and specifying fs.

figure

order = 2;
tftmoment(x,fs,order);title('Second Temporal Moment')
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There are two distinct features in the plot at 100 and 300 Hz corresponding to the
induced resonances shown by the spectrogram. The moments are much closer in

magnitude than the spectral results were.
Now find the first four temporal moments, using the timeline ts that you already

constructed. This time, use the form that returns both the moment vectors and the
associated frequency vectors. Embed the order array as part of the input argument.

[momentT,f] = tftmoment(x,ts,[1 2 3 4]);

Each column of momentT contains the moment corresponding to one of the input orders.

momentT 1

momentT(:,1);
momentT 2 ;

momentT(:,2)
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momentT 3
momentT 4

momentT(:,3);
momentT(:,4);

Plot the four moments separately to compare the shapes.

figure

subplot(2,2,1)

plot(f,momentT 1)

title('First Temporal Moment — Mean')
xlabel('Frequency in Hz")

subplot(2,2,2)

plot(f,momentT 2)

title('Second Temporal Moment — Variance')
xlabel('Frequency in Hz")

subplot(2,2,3)

plot(f,momentT 3)

title('Third Temporal Moment — Skewness')
xlabel('Frequency in Hz")

subplot(2,2,4)

plot(f,momentT 4)

title('Fourth Temporal Moment — Kurtosis')
xlabel('Frequency in Hz")
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For the data in this example, the second and fourth temporal moments show the clearest

features for the faulty resonance.

Use an Existing Power Spectrogram to Compute the Conditional Temporal

Moment

By default, tfsmoment calls the function pspectrum internally to generate the power
spectrogram that tftmoment uses for the moment computation. You can also import an
existing power spectrogram for tftmoment to use instead. This capability is useful if you
already have a power spectrogram as a starting point, or if you want to customize the
pspectrum options by generating the spectrogram explicitly first.
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Input a power spectrogram that has already been generated using default options.
Compare the resulting temporal-moment plot with one that tftmoment generates using
its own pspectrum default options. The results should be the same.

Load the data, which consists of simulated vibration measurements for a system with a
fault that causes periodic resonances. p is the previously computed spectrogram, fp and
tp are the frequency and time vectors associated with p, x is the original vector of
measurements,and fs is the sampling frequency,.

load tftmoment example p fp tp x fs

Determine the second temporal moment using the spectrogram and its associated
frequency and time vectors. Plot the moment.

[momentT p,f p] = tftmoment(p,fp,tp,2);

figure

subplot(2,1,1)

plot(f_p,momentT p)

title('Second Temporal Moment using Input Spectrogram ')

Now find and plot the second temporal moments using the original data and sampling
rate.

[momentT,f] = tftmoment(x,fs,2);

subplot(2,1,2)

plot(f,momentT)

title('Second Temporal Moment using Measurement Data')
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As expected, the plots match since the default pspectrum options were used for both.
This result demonstrates the equivalence between the two approaches when there is no

customization.

Find the Conditional Temporal Moments of Data Measurements in a Timetable

Real-world measurements often come packaged as part of a time-stamped table that
records actual time and readings rather than relative times. You can use the timetable
format for capturing this data. This example shows how tftmoment operates with a
timetable input, in contrast to the data vector inputs used for the other tftmoment
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examples, such as “Plot the Conditional Temporal Moments of a Time Series Vector” on
page 1-130.

Load the data, which consists of a single timetable (xt inner1l) containing measurement
readings and time information for a piece of machinery. Examine the properties of the
timetable.

load tfmoment tdata.mat xt innerl;
xt _innerl.Properties

ans = struct with fields:
Description: "'
UserData: []
DimensionNames: {'Time' 'Variables'}
VariableNames: {'x innerl'}
VariableDescriptions: {}
VariableUnits: {}
VariableContinuity: []
RowTimes: [146484x1 duration]

This table consists of dimensions Time and the Variables, where the only variable is
X_innerl.

Find the second and fourth conditional temporal moments (order = [2 4]) for the data
in the timetable.

order = [2 4];
[momentT xt innerl,f] = tftmoment(xt innerl,order);
size(momentT xt innerl)

ans = 1Ix2

1024 2

The temporal moments are represented by the columns of momentT xt innerl, just as
they would be for a moment taken from a time series vector input.

Plot the moments versus returned frequency vector f.

momentT innerl 2
momentT innerl 4

momentT xt innerl(:,1);
momentT xt innerl(:,2);

figure
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subplot(2,1,1)
plot(f,momentT innerl 2)
title("Second Temporal Moment")

subplot(2,1,2)

plot(f,momentT innerl 4)
title("Fourth Temporal Moment")
xlabel('Frequency in Hz')
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Input Arguments

xt — Time-series signal
timetable

Time-series signal for which tftmoment returns the moments, specified as a timetable
that contains a single variable with a single column. xt must contain increasing, finite
row times. If the timetable has missing or duplicate time points, you can fix it using the
tips in “Clean Timetable with Missing, Duplicate, or Nonuniform Times” (MATLAB). xt
can be nonuniformly sampled, with the pspectrum constraint that the median time
interval and the mean time interval must obey:

1 Median time interval <

—_— - : 100.
100 Mean time interval

For an example of timetable input, see “Find the Conditional Temporal Moments of
Data Measurements in a Timetable” on page 1-136

order — Moment orders to return
integer scalar | integer vector

Moment orders to return, specified as one of the following:

* Integer — Compute one moment.

* Vector — Compute multiple moments at once.

Example: momentT = tftmoment(x,2) specifies the second-order temporal moment
(variance) of the time-frequency distribution of x.

Example: momentT = tftmoment(x,[1 2 3 4]) specifies the first four moment orders
of the time-frequency distribution of x.

You can specify any order and number of orders, but low-order moments carry less
computational burden and are better suited to real-time applications. The first four
moment orders correspond to the statistical moments of a data set:

1 Mean ("group delay" for temporal data)
2 Variance
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3  Skewness (degree of asymmetry about the mean)
4 Kurtosis (length of outlier tails in the distribution — a normal distribution has a
kurtosis of 3)

For examples, see:

* Timetable data input — “Find the Conditional Temporal Moments of Data
Measurements in a Timetable” on page 1-136

* Time-series vector data input — “Plot the Conditional Temporal Moments of a Time
Series Vector” on page 1-130

x — Time-series signal
vector

Time-series signal from which tftmoment returns the moments, specified as a vector.

For an example of a time-series input, see “Plot the Conditional Temporal Moments of a
Time Series Vector” on page 1-130

fs — Sample rate
positive scalar

Sample rate of x, specified as positive scalar in hertz when X is uniformly sampled.

ts — Sample-time values
duration scalar | vector | duration vector | datetime vector

Sample-time values, specified as one of the following:

* duration scalar — time interval between consecutive samples of X.

* Vector, duration array, or datetime array — time instant or duration corresponding
to each element of x.

ts can be nonuniform, with the pspectrum constraint that the median time interval and
the mean time interval must obey:

1 < Median time interval <100.

100 Mean time interval

p — Power spectrogram or spectrum of signal
matrix | vector
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Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a
column vector (spectrum). p contains an estimate of the short-term, time-localized power
spectrum of a time-series signal. If you specify p, then tftmoment uses p rather than
generate its own power spectrogram. For an example, see “Use a Customized Power
Spectrogram to Compute the Conditional Spectral Moment” on page 1-114.

fp — Frequencies for p
vector

Frequencies for power spectrogram or spectrum p when p is supplied explicitly to
tftmoment, specified as a vector in hertz. The length of fp must be equal to the number
of rows in p.

tp — Time information for p
vector | duration vector | datetime vector | duration scalar

Time information for power spectrogram or spectrum p when p is supplied explicitly to
tftmoment, specified as one of the following:

* Vector of time points, whose data type can be numeric, duration, or datetime. The
length of vector tp must be equal to the number of columns in p.

* duration scalar that represents the time interval in p. The scalar form of tp can be
used only when p is a power spectrogram matrix.

» For the special case where p is a column vector (power spectrum), tp can be a
numeric, duration, or datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Centralize', false, 'TimeLimits',[20 100] computes the
noncentralized conditional temporal moment for the portion of the signal ranging from 20
sec to 100 sec.

Centralize — Centralize-moment option
true (default) | false
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Centralize-moment option, specified as the comma-separated pair consisting of
'Centralize' and a logical.

o IfCentralizeis true, then tftmoment returns the centralized conditional moment
by subtracting the conditional mean (which is the first moment) in the computation.

o IfCentralizeis false, then tftmoment returns the noncentralized moment,
preserving any data offset.

Example: momentT = tftmoment(x,2, 'Centralize', false).

TimeLimits — Time Limits
full timespan (default) | [t1 t2]

Time limits, specified as the comma-separated pair consisting of 'TimeLimits' and a
two-element vector containing lower and upper bounds t1 and t2 in the same units as ts,
and of the data types:

* Numeric or duration when fs or a scalar ts are specified, or when ts is a numeric
or duration vector

* Numeric, duration, or datetime when ts is specified as a datetime vector

This specification allows you to extract a temporal section of data from a longer data set.

Output Arguments

momentT — Conditional temporal moment
matrix

Conditional temporal moment returned as a matrix whose columns represent the
temporal moments.

momentT is a matrix with one or more columns, regardless of whether the input data is
timetable xt, time-series vector X, or spectrogram data p.

f — Frequencies of moment estimates
double vector

Frequencies of moment estimates in hertz, specified as a double vector. For an example,
see “Plot the Conditional Temporal Moments of a Time Series Vector” on page 1-130
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Definitions

Conditional Temporal Moments

The conditional temporal moments of a nonstationary signal comprise a set of time-
varying parameters that characterize the group delay as it evolves in time. They are
related to the conditional spectral moment on page 1-126 and the joint time-frequency
moments. The conditional spectral moment is an integral function of frequency, given
time, and marginal distribution. The conditional temporal moment is an integral function
of time, given frequency, and marginal distribution. The joint time-frequency moment is a
double integral that varies both time and frequency [1], [2].

Each moment is associated with a specific order, with the first four orders being the
statistical properties of 1) mean, 2) variance, 3) skewness, and 4) kurtosis.

tftmoment computes the conditional temporal moments of the time-frequency
distribution for a signal x, for the orders specified in order. The function performs these
steps:

1 Compute the spectrogram power spectrum, P(t,f), of the input using the pspectrum
function and uses it as a time-frequency distribution. If the syntax used supplies an
existing P(t,f), then tftmoment uses that instead.

2 )
Estimate the conditional temporal moment
centralized case:

o of the signal using, for the non-

<t” >w - ﬁ‘[t”P(t,w)dt,

where m is the order and P(t) is the marginal distribution.

n
For the centralized conditional temporal moment H' (@) , the function uses
n
M) = —— [[e= (£ )Pt dt.
' (@) fle={e"), | Pt.o)

1
P(o)
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update

Update posterior parameter distribution of degradation remaining useful life model

Syntax

update(mdl,data)

Description

update(mdl,data) updates the posterior estimate of the parameters of the degradation
remaining useful life (RUL) model md1 using the latest degradation measurements in
data.

Examples

Update Exponential Degradation Model in Real Time
Load training data, which is a degradation feature profile for a component.
load('expRealTime.mat"')

For this example, assume that the training data is not historical data. When there is no
historical data, you can update your degradation model in real time using observed data.

Create an exponential degradation model with the following settings:

Arbitrary & ang # prior distributions with large variances so that the model relies
mostly on observed data

* Noise variance of 0.003
mdl = exponentialDegradationModel('Theta',1, 'ThetaVariance',1le6, ...

'Beta', 1, 'BetaVariance',1le6, ...
'NoiseVariance',0.003);
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Since there is no life time variable in the training data, create an arbitrary life time vector
for fitting.

lifeTime = [1l:length(expRealTime)];

Observe the degradation feature for 10 iterations. Update the degradation model after
each iteration.

for i=1:10

update(mdl, [lifeTime(i) expRealTime(i)])
end

After observing the model for some time, for example at a steady-state operating point,
you can restart the model and save the current posterior distribution as a prior
distribution.

restart(mdl, true)
View the updated prior distribution parameters.
mdl.Prior

ans = struct with fields:
Theta: 2.3567
ThetaVariance: 0.0058

Beta: 0.0721
BetaVariance: 3.6363e-05
Rho: -0.8429

Input Arguments

mdl — Degradation RUL model
linearDegradationModel object | exponentialDegradationModel object

Degradation RUL model, specified as a LinearDegradationModel object or an
exponentialDegradationModel object. update updates the posterior estimates of the
degradation model parameters based on the latest degradation feature measurements in
data.

For a linearDegradationModel, the updated parameters are Theta and
ThetaVariance.
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For an exponentialDegradationModel, the updated parameters are Theta,
ThetaVariance, Beta, BetaVariance, and Rho.

update also sets the following properties of mdl:

o InitialLifeTimeValue — The first time you call update, this property is set to the
life time value in the first row of data.

* CurrentLifeTimeValue — Each time you call update, this property is set to the life
time value in the last row of data.

* CurrentMeasurement — Each time you call update, this property is set to the
feature measurement value in the last row of data.

data — Degradation feature measurements
two-column array | table object

Degradation feature measurements, specified as one of the following:

* Two-column array — The first column contains life time values and the second column
contains the corresponding degradation feature measurement.

+ table or timetable object that contains variables with names that match the
LifeTimeVariable and DataVariables properties of mdl.

See Also

Functions
exponentialDegradationModel | linearDegradationModel | update

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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writeToLastMemberRead

Write data to member of an ensemble datastore

Syntax

writeToLastMemberRead(ensemble,Name,Value)
writeToLastMemberRead(ensemble,data)

Description

writeToLastMemberRead(ensemble,Name,Value) writes the data specified one or
more Name, Value pair arguments to the last-read member of an ensemble datastore. The
last-read member is the member most recently accessed using the read command. (See
“Data Ensembles for Condition Monitoring and Predictive Maintenance”.) Each Name
must match an entry in the property ensemble.DataVariables. The function writes the
corresponding Value to the ensemble datastore.

+ IfensembleisasimulationEnsembleDatastore object, then
writeToLastMemberRead writes the data to the MAT-file corresponding to the last-
read ensemble member (ensemble.LastMemberRead).

+ Ifensembleisa fileEnsembleDatastore object, then writeToLastMemberRead
uses the function identified by the property ensemble.WriteToMemberFcn to write
the data. If that property is not defined, then writeToLastMemberRead generates an
error.

writeToLastMemberRead(ensemble,data) writes the data in a table row to the last-

read ensemble member. The table variables must match entries in the property
ensemble.DataVariables.

Examples
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Append Derived Data to Ensemble Members

You can process data in an ensemble datastore and add derived variables to the ensemble
members. For this example, process a variable value to compute a label that indicates
whether the ensemble member contains data obtained with a fault present. You then add
that label to the ensemble.

For this example, use the following code to create a simulationEnsembleDatastore
object using data previously generated by running a Simulink® model at a various fault
values. (See generateSimulationEnsemble.) The ensemble includes simulation data
for five different values of a model parameter, ToothFaultGain. The model was
configured to log the simulation data to a variable named logsout in the MAT-files that
are stored for this example in simEnsData.zip. Because of the volume of data, the
unzip operation takes several minutes.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd, 'logsout')

ensemble =
simulationEnsembleDatastore with properties:

DataVariables: [6x1 string]
IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]

NumMembers:

[

[

[
SelectedVariables: [6x1 string]

5

LastMemberRead: [

0x0 string]

Read the data from the first member in the ensemble. The software determines which
ensemble is the first member, and updates the property ensemble.LastMemberRead to
reflect the name of the corresponding file.

data = read(ensemble)

data=1x6 table
SimulationInput SimulationMetadata Tach

[1x1 Simulink.SimulationInput] [1x1 Simulink.SimulationMetadata] [20202x1 tir

By default, all the variables stored in the ensemble data are designated as
SelectedVariables. Therefore, the returned table row includes all ensemble variables,
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including a variable SimulationInput, which contains the
Simulink.SimulationInput object that configured the simulation for this ensemble
member. That object includes the ToothFaultGain value used for the ensemble member,
stored in a data structure in its Variables property. Examine that value.

data.SimulationInput

ans = 1x1 cell array
{1x1 Simulink.SimulationInput}

Inputvars = data.SimulationInput{l}.Variables;
Inputvars.Name

ans =
'ToothFaultGain'

Inputvars.Value

ans = -2

Suppose that you want to convert the ToothFaultGain values for each ensemble
member into a binary indicator of whether or not a tooth fault is present. Suppose
furtther that you know from your experience with the system that tooth-fault gain values
less than 0.1 in magnitude are small enough to be considered healthy operation. Convert
the gain value for this ensemble into an indicator that is 0 (no fault) for -0.1 < gain < 0.1,
and 1 (fault) otherwise.

sT = abs(Inputvars.Value) < 0.1;

To append the new tooth-fault indicator to the corresponding ensemble data, first expand
the list of data variables in the ensemble.

ensemble.DataVariables = [ensemble.DataVariables; "ToothFault"];
ensemble.DataVariables

ans = 7x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"
"ToothFault"
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This operation is conceptually equivalent to adding a column to the table of ensemble
data. Now that DataVariables contains the new variable name, assign the derived
value to that column of the member using writeToLastMemberRead.

writeToLastMemberRead(ensemble, 'ToothFault',sT);

In practice, you want to append the tooth-fault indicator to every member in the
ensemble. To do so, reset the ensemble datastore to its unread state, so that the next read
starts at the first ensemble member. Then, loop through all the ensemble members,
computing ToothFault for each member and appending it. The reset operation does
not change ensemble.DataVariables, so ToothFault is still present in that list.

reset(ensemble);

sT = false;
while hasdata(ensemble)
data = read(ensemble);
InputVars = data.SimulationInput{l}.Variables;
TFGain = InputVars.Value;
sT = abs(TFGain) < 0.1;
writeToLastMemberRead(ensemble, 'ToothFault',sT);
end

Finally, designate the new tooth-fault indicator as a condition variable in the ensemble
datastore. You can use this designation to track and refer to variables in the ensemble
data that represent conditions under which the member data was generated.

ensemble.ConditionVariables = {"ToothFault"};
ensemble.ConditionVariables

ans =
"ToothFault"

You can add the new variable to ensemble.SelectedVariables when you want to read
it out for further analysis. For an example that shows more ways to manipulate and
analyze data stored in a simulationEnsembleDatastore object, see “Using Simulink
to Generate Fault Data”.

Read from and Write to a File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB® files, and configure it with
functions that tell the software how to read from and write to the datastore. (For more
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details about configuring file ensemble datastores, see “File Ensemble Datastore With
Measured Data”.) Because of the volume of data, the unzip operation takes a few
minutes.

% Create ensmeble datastore that points to datafiles in current folder
unzip fileEnsData.zip % extract compressed files

location = pwd;

extension ".mat';

fensemble fileEnsembleDatastore(location,extension);

% Configure with functions for reading and writing variable data
addpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Make sure functions are
fensemble.DataVariablesFcn = @readBearingData;

fensemble.WriteToMemberFcn = @writeBearingData;

% Specify data and selected variables
fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.SelectedVariables = ["gs";"load"];

Read the first member of the ensemble. The functions that you assigned tell the read and
writeToLastMemberRead commands how to interact with the data files that make up
the ensemble. Thus, when you call read, it reads all the variables named in
fensemble.SelectedVariables. The read command uses @readBearingData to
read selected variables that are in fensemble.DataVariables. For this example,
@readBearingData extracts the data variables from a structure, bearing, that is stored
in the file.

data = read(fensemble)

data=1x2 table
gs load

[146484x1 double] 0

You can now process the data from the member as needed. For this example, compute the
average value of the signal stored in the variable gs. Extract the data from the table
returned by read.

gsdata
gsmean

data.gs{1};
mean(gsdata);
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You can write the mean value gsmean back to the data file as a new variable. To do so,
first expand the list of data variables in the ensemble to include a variable for the new
value. Call the new variable gsMean.

fensemble.DataVariables = [fensemble.DataVariables; "gsMean"]

fensemble =
fileEnsembleDatastore with properties:

DataVariablesFcn: @readBearingData
ConditionVariablesFcn: []
IndependentVariablesFcn: []
WriteToMemberFcn: @writeBearingData
DataVariables: [5x1 string]

IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]
SelectedVariables: [2x1 string]
NumMembers: 5
LastMemberRead: '\\fs-21-ah\home$\clevy\Documents\MATLAB\examples\predmai

Next, write the derived mean value to the file corresponding to the last-read ensemble
member. (See “Data Ensembles for Condition Monitoring and Predictive Maintenance”.)
When you call writeToLastMemberRead, it uses fensemble.WriteToMemberFcn to
write the table data to the file. In this example, WriteToMemberFcn is
writeBearingData, a simple function that takes a data structure and adds it to
whatever other data is already present in the data file.

newData = struct('gsMean',gsmean);
writeTolLastMemberRead(fensemble, 'gsMean',newData);

Calling read again advances the last-read-member indictor to the next file in the ensemble
and reads the data from that file.

data = read(fensemble)

data=1x2 table
gs load

[146484x1 double] 50

You can see that this data is from a different member by examining the load variable in
the table. Here, its value is 50, while in the previously read member, it was 0.
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You can repeat the processing steps to compute and append the mean for this ensemble
member. In practice, it is more useful to automate the process of reading, processing, and
writing data. To do so, reset the ensemble to a state in which no data has been read. Then
loop through the ensemble and perform the read, process, and write steps for each
member.

reset (fensemble)
while hasdata(fensemble)
data = read(fensemble);
gsdata = data.gs{1};
gsmean = mean(gsdata);
newData = struct('gsMean',gsmean);
writeToLastMemberRead(fensemble, 'gsMean',newData);
end

The hasdata command returns false when every member of the ensemble has been read.
Now, each data file in the ensemble includes the gsMean variable derived from the data
gs in that file. You can use techniques like this loop to extract and process data from your
ensemble files as you develop a predictive-maintenance algorithm. For an example
illustrating in more detail the use of a file ensemble datastore in the algorithm-
development process, see “Rolling Element Bearing Fault Diagnosis”.

To confirm that the derived variable is present in the file ensemble datastore, read it from
the first and second ensemble members. To do so, reset the ensemble again, and add the
new variable to the selected variables. In practice, after you have computed derived
values, it can be useful to read only those values without rereading the unprocessed data,
which can take significant space in memory. For this example, read selected variables that
include the new variable, gsMean, but do not include the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["load";"gsMean"];
datal = read(fensemble)

datal=1x2 table
load gsMean

0 [1x1 struct]

data2 = read(fensemble)

data2=1x2 table
load gsMean
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50 [1x1 struct]

rmpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Reset path

Input Arguments

ensemble — Ensemble datastore
simulationEnsembleDatastore object | fileEnsembleDatastore object

Ensemble datastore to add data variables to, specified as a:

* simulationEnsembleDatastore object
+ fileEnsembleDatastore object

writeToLastMemberRead writes the data to the last-read member of the specified
ensemble, identified by the LastMemberRead property of the ensemble. The last-read
ensemble member is the member most recently accessed using the read command. (See
“Data Ensembles for Condition Monitoring and Predictive Maintenance”.)

data — New data
table row

New data to write to the current ensemble member, specified as a table row. For
example, suppose that you have calculated two values that you want to add to the current
member: a vector stored as the MATLAB workspace variable Afilt, and a scalar stored
as Amean. Use the following command to construct data.

data = table(Afilt,Amean, 'VariableNames', {'Afilt', 'Amean'});

Limitations

* When you use a simulationEnsembleDatastore to manage data at a remote
location, such as cloud storage using Amazon S3™ (Simple Storage Service), Windows
Azure® Blob Storage, and Hadoop® Distributed File System (HDFS™), you cannot use
writeToLastMemberRead to add data to the ensemble datastore.
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See Also

fileEnsembleDatastore | read | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a
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covariateSurvivalModel

Proportional hazard survival model for estimating remaining useful life

Description

Use covariateSurvivalModel to estimate the remaining useful life (RUL) of a
component using a proportional hazard survival model. This model describes the survival
probability of a test component using historical information about the life span of
components and associated covariates. Covariates are environmental or explanatory
variables, such as the component manufacturer or operating conditions. Covariate
survival models are useful when the only data you have are the failure times and
associated covariates for an ensemble of similar components, such as multiple machines
manufactured to the same specifications. For more information on the survival model, see
“Proportional Hazard Survival Model” on page 2-11.

To configure a covariateSurvivalModel object for a specific type of component, use
fit, which estimates model coefficients using a collection of failure-time data and
associated covariates. Once you configure the parameters of your covariate survival
model, you can then predict the remaining useful life of similar components using
predictRUL.

If you only have life span measurements and do not have covariate information, use a
reliabilitySurvivalModel.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl = covariateSurvivalModel

mdl = covariateSurvivalModel (initModel)

mdl = covariateSurvivalModel(  ,Name,Value)
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Description

mdl = covariateSurvivalModel creates a covariate survival model for estimating
RUL and initializes the model with default settings.

mdl = covariateSurvivalModel(initModel) creates a covariate survival model
and initializes the model parameters using an existing covariateSurvivalModel object
initModel.

mdl = covariateSurvivalModel(  ,Name,Value) specifies user-settable model
properties using name-value pairs. For example,
covariateSurvivalModel('LifeTimeUnit', "days") creates a covariate survival

model with that uses days as a life time unit. You can specify multiple name-value pairs.
Enclose each property name in quotes.

Input Arguments

initModel — Covariate survival model
covariateSurvivalModel object

Covariate survival model, specified as a covariateSurvivalModel object.

Properties

BaselineCumulativeHazard — Baseline hazard rate function
two-column array

This property is read-only.
Baseline hazard rate of the survival model, specified as a two-column array and estimated
by the fit function. The second column contains the baseline survivor functions values,

and the first column contains the corresponding life time values.

For more information on the survival model, see “Proportional Hazard Survival Model” on
page 2-11.

EncodingMethod — Encoding method
"dummy" (default) | "binary"
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Encoding method for the categorical features in EncodedVariables, specified as one of
the following:

+ "dummy" — For a categorical feature with N categories, encode the variable using (N -
1) bits.

* "binary" — Binary encoding
You can specify EncodingMethod:

* Using a name-value pair when you create the model.

* Using dot notation after model creation.

Standardize — Flag for standardizing covariate features
false (default) | true

Flag for standardizing covariate features when calculating Cox regression parameters,
specified as a logical value. When Standardize is true, numeric covariate variables are
standardized such that covariate X becomes (X-mean (X)) /std(X).

Standardization does not affect encoded categorical variables.

You can specify Standardize:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Ties — Method for handling tied failure times
"breslow" (default) | "efron"

Method for handling tied failure times, specified as either "breslow" or "efron". For
more information on these methods, see “Cox Proportional Hazards Model” (Statistics
and Machine Learning Toolbox).

You can specify Ties:

* Using a name-value pair when you create the model.

* Using dot notation after model creation.

Options — Numerical and display settings
structure
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Numerical and display settings for Cox regression, specified as a structure created using
statset('coxphfit'). You can modify the options in the structure using dot notation.

You can specify Options:

* Using a name-value pair when you create the model.

* Using dot notation after model creation.

ParameterValues — Covariate multiplying coefficients
vector

This property is read-only.
Covariate multiplying coefficients of the survival model, specified as a scalar and
estimated by the fit function. For more information on the survival model, see

“Proportional Hazard Survival Model” on page 2-11.

ParameterCovariance — Covariance of covariate multiplying coefficients
array

This property is read-only.

Covariance of the covariate multiplying coefficients, specified as a positive array with size
equal to the number of coefficients and estimated by the fit function.

ParameterNames — Covariate multiplying coefficient names
string array

This property is read-only.

Covariate multiplying coefficient names specified as a string array and assigned when the
model is trained using the fit function.

Coefficients corresponding to numeric covariates have the same name as the
corresponding data variable in DataVariables. For encoded variables, the coefficient
names contain the name of the corresponding encoded variable from
EncodedVariables and a representation of the encoded bit order.

CensorVariable — Censor variable
""" (default) | string
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Censor variable, specified as a string that contains a valid MATLAB variable name. The
censor variable is a binary variable that indicates which life-time measurements in data
are not end-of-life values.

CensorVariable must not match any of the strings in DataVariables or
LifeTimeVariable.

You can specify CensorVariable:

» Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

LifeTimeVariable — Life time variable
""" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name. For
survival models, the life time variable contains the historical life span measurements of
components.

You can specify LifeTimeVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Manually using dot notation.

LifeTimeUnit — Life time variable units
"" (default) | value

Life time variable units, specified as a string.

The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).

DataVariables — Covariate data variable
"" (default) | string | string array

Covariate data variables, specified as a string or string array. The strings in
DataVariables must be valid MATLAB variable names. Covariates are also called
environmental or explanatory variables.
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You can specify DataVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

EncodedVariables — Encoded covariate variables
"" (default) | string | string array

Encoded covariate variables, specified as a string or string array. The strings in
EncodedVariables must be valid MATLAB variable names. Encoded variables are
usually nonnumeric categorical features that fit converts to numeric vectors before
fitting. You can also designate logical or numeric values that take values from a small set
to be encoded.

To specify the method of encoding, use EncodingMethod.
You can specify EncodedVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
» Using dot notation after model creation.

The strings in EncodedVariables must be a subset of the strings in DataVariables.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Object Functions

predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data
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plot Plot survivor function for covariate survival remaining useful life model

Examples

Train Covariate Survival Model
Load training data.
load('covariateData.mat')

This data contains battery discharge times and related covariate information. The
covariate variables are:

* Temperature
* Load
e Manufacturer

The manufacturer information is a categorical variable that must be encoded.
Create a covariate survival model.
mdl = covariateSurvivalModel;

Train the survival model using the training data, specifying the life time variable, data
variables, and encoded variable. There is no censor variable for this training data.

fit(mdl,covariateData, "DischargeTime", ["Temperature","Load", "Manufacturer"],[]1, "Manufat
Successful convergence: Norm of gradient less than OPTIONS.TolFun
Plot the baseline survivor function for the model.

plot(mdl)

2-8



covariateSurvivalModel

Survival Function Plot
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Predict RUL Using Covariate Survival Model

Load training data.

load('covariateData.mat"')

This data contains battery discharge times and related covariate information. The
covariate variables are:

* Temperature
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* Load
e Manufacturer

The manufacturer information is a categorical variable that must be encoded.

Create a covariate survival model, and train it using the training data.

mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit', "hours"
'DataVariables',["Temperature","Load", "Manufacturer"], 'EncodedVariables', "Manufactu
fit(mdl, covariateData)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

Suppose you have a battery pack manufactured by maker B that has run for 30 hours.
Create a test data table that contains the usage time, DischargeTime, and the measured
ambient temperature, TestAmbientTemperature, and current drawn,
TestBatteryLoad.

TestBatterylLoad = 25;

TestAmbientTemperature = 60;

DischargeTime = hours(30);

TestData = timetable(TestBatterylLoad,TestAmbientTemperature, 'B', 'RowTimes', hours(30));
TestData.Properties.VariableNames = {'Temperature', 'Load', 'Manufacturer'};
TestData.Properties.DimensionNames{1l} = 'DischargeTime’;

Predict the RUL for the battery.
estRUL = predictRUL(mdl,TestData)

estRUL = duration
38.657 hr

Plot the survivor function for the covariate data of the battery.

plot(mdl,TestData)
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Proportional Hazard Survival Model

hr

The covariateSurvivalModel object implements the following proportional hazard

survival model:
h(X,t)=hy(t)e? ¥

where:
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* X s a vector covariate values.

* b is a vector of covariate multiplying coefficients. These coefficients correspond to the
ParameterValues property of the model.

* hy(t) is the baseline hazard rate function, which corresponds to the
BaselineCumulativeHazard property of the model.

* h(X,t) is the hazard rate at time t for X.
To find the parameters of this model, the fit function uses the coxphfit function.

For more information proportional hazard models, see “Cox Proportional Hazards Model”
(Statistics and Machine Learning Toolbox).

See Also

Functions
coxphfit | reliabilitySurvivalModel

Topics
“Models for Predicting Remaining Useful Life”
“Cox Proportional Hazards Model” (Statistics and Machine Learning Toolbox)

Introduced in R2018a



exponentialDegradationModel

exponentialDegradationModel

Exponential degradation model for estimating remaining useful life

Description

Use exponentialDegradationModel to model an exponential degradation process for
estimating the remaining useful life (RUL) of a component. Degradation models estimate
the RUL by predicting when a monitored signal will cross a predefined threshold.
Exponential degradation models are useful when the component experiences cumulative
degradation. For more information on the degradation model, see “Exponential
Degradation Model” on page 2-24.

To configure an exponentialDegradationModel object for a specific type of
component, you can:

+ Estimate the model parameters using historical data regarding the health of an
ensemble of similar components, such as multiple machines manufactured to the same
specifications. To do so, use fit.

* Specify the model parameters when you create the model based on your knowledge of
the component degradation process.

Once you configure the parameters of your degradation model, you can then predict the
remaining useful life of similar components using predictRUL.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl
mdl

exponentialDegradationModel
exponentialDegradationModel (Name, Value)
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Description

mdl = exponentialDegradationModel creates an exponential degradation model for
estimating RUL and initializes the model with default settings.

mdl = exponentialDegradationModel(Name,Value) specifies user-settable model
properties using name-value pairs. For example,
exponentialDegradationModel('NoiseVariance',0.5) creates an exponential
degradation model with a model noise variance of 0.5. You can specify multiple name-
value pairs. Enclose each property name in quotes.

Properties

Theta — Current mean value of the 6 parameter
scalar

This property is read-only.

Current mean value of the 6 parameter in the degradation model, specified as a scalar.
For more information on the degradation model, see “Exponential Degradation Model” on
page 2-24.

You can specify Theta using a name-value pair argument when you:

* Create the model.
* Reset the model using the restart function.

Otherwise, the value of Theta changes when you use the update function.

ThetaVariance — Current variance of the 8 parameter
nonnegative scalar

This property is read-only.
Current variance of the 6 parameter in the degradation model, specified as a nonnegative
scalar. For more information on the degradation model, see “Exponential Degradation

Model” on page 2-24.

You can specify ThetaVariance using a name-value pair argument when you:
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* Create the model.
* Reset the model using the restart function.

Otherwise, the value of ThetaVariance changes when you use the update function.

Beta — Current mean value of the g parameter
scalar

This property is read-only.

Current mean value of the  parameter in the degradation model, specified as a scalar.
For more information on the degradation model, see “Exponential Degradation Model” on
page 2-24.

You can specify Beta using a name-value pair argument when you:

* Create the model.
* Reset the model using the restart function.

Otherwise, the value of Beta changes when you use the update function.

BetaVariance — Current variance of the g parameter
nonnegative scalar

This property is read-only.

Current variance of the p parameter in the degradation model, specified as a nonnegative
scalar. For more information on the degradation model, see “Exponential Degradation
Model” on page 2-24.

You can specify BetaVariance using a name-value pair argument when you:

* Create the model.
* Reset the model using the restart function.

Otherwise, the value of BetaVariance changes when you use the update function.

Rho — Current correlation between 8 and g
0 (default) | scalar value in the range [-1,1]

This property is read-only.
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Current correlation between 6 and S, specified as a scalar value in the range [-1,1]. For
more information on the degradation model, see “Exponential Degradation Model” on
page 2-24.

You can specify Rho using a name-value pair argument when you:

* Create the model.
* Reset the model using the restart function.

Otherwise, the value of Rho changes when you use the update function.

Phi — Current intercept value
scalar

Current intercept value ¢ in the degradation model, specified as a scalar. For more
information on the degradation model, see “Exponential Degradation Model” on page 2-
24.

You can specify Phi using a name-value pair argument when you create the model.
Otherwise, the value of Phi changes when you estimate the model prior using the fit
function.

Prior — Prior information about model parameters
structure

Prior information about model parameters, specified as a structure with the following
fields:

* Theta — Mean value of 6

* ThetaVariance — Variance of 6

* Beta — Mean value of

* BetaVariance — Variance offf

* Rho — Correlation between 6 and .

You can specify the fields of Prior:

* When you create the model. When you specify Theta, ThetaVariance, Theta,
ThetaVariance, or Rho at model creation using name-value pairs, the corresponding
field of Prior is also set.

» Using the fit function. In this case, the prior values are derived from the data used to
fit the model.
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* Using the restart function. In this case, the current values of Theta,
ThetaVariance, Theta, ThetaVariance, and Rho are copied to the corresponding
fields of Prior.

* Using dot notation after model creation.

For more information on the degradation model, see “Exponential Degradation Model” on
page 2-24.

NoiseVariance — Variance of additive noise
1 (default) | nonnegative scalar

Variance of additive noise ¢ in the degradation model, specified as a nonnegative scalar.
For more information on the degradation model, see “Exponential Degradation Model” on
page 2-24.

You can specify NoiseVariance:

* Using a name-value pair when you create the model.
* Using a name-value pair with the restart function.
* Using dot notation after model creation.

SlopeDetectionLevel — Slope detection level
0.05 (default) | scalar value in the range [0,1] | []

Slope detection level for determining the start of the degradation process, specified as a
scalar in the range [0,1]. This value corresponds to the alpha value in a t-test of slope
significance.

To disable the slope detection test, set SLopeDetectionLevel to [].

You can specify SlopeDetectionlLevel:

* Using a name-value pair when you create the model.
* Using a name-value pair with the restart function.
* Using dot notation after model creation.

CurrentMeasurement — Latest degradation feature value
scalar

This property is read-only.
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Latest degradation feature value supplied to the update function, specified as a scalar.

InitialLifeTimeValue — Initial life time variable value
scalar | duration object

This property is read-only.

Initial life time variable value when the update function is first called on the model,
specified as a scalar.

When the model detects a slope, the InitialLifeTime value is changed to match the
SlopeDetectionInstant value.

CurrentLifeTimeValue — Current life time variable value
scalar | duration object

This property is read-only.
Latest life time variable value supplied to the update function, specified as a scalar.

LifeTimeVariable — Life time variable
""" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name or

When you train the model using the fit function, if your training data is a:

 table, then LifeTimeVariable must match one of the variable names in the table.

 timetable, then LifeTimeVariable one of the variable names in the table or the
dimension name of the time variable, data.Properties.DimensionNames{1}.

You can specify LifeTimeVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

LifeTimeUnit — Life time variable units
"" (default) | value

Life time variable units, specified as a string.
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The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).

DataVariables — Degradation variable name
""" (default) | string

Degradation variable name, specified as a string that contains a valid MATLAB variable
name. Degradation models have only one data variable.

You can specify DataVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing when fitting prior values from data, specified as either
true or false.

You can specify UseParallel:

* Using a name-value pair when you create the model.
* Using a name-value pair with the restart function.

* Using dot notation after model creation.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.

* Using dot notation after model creation.
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Object Functions

fit Estimate parameters of remaining useful life model using historical data

predictRUL Estimate remaining useful life for a test component

update Update posterior parameter distribution of degradation remaining useful
life model

restart Reset remaining useful life degradation model

Examples

Train Exponential Degradation Model
Load training data.
load('expTrainVectors.mat')

The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create an exponential degradation model with default settings.
mdl = exponentialDegradationModel;
Train the degradation model using the training data.

fit(mdl,expTrainVectors)

Create Exponential Degradation Model with Known Priors

Create an exponential degradation model and configure it with a known prior distribution.

mdl = exponentialDegradationModel('Theta',0.5, 'ThetaVariance',0.003,...
'Beta',0.3, 'BetaVariance',0.002,...
'Rho',0.1);

The specified prior distribution parameters are stored in the Prior property of the
model.

mdl.Prior
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ans = struct with fields:
Theta: 0.5000
ThetaVariance: 0.0030

Beta: 0.3000
BetaVariance: 0.0020
Rho: 0.1000

The current posterior ditribution of the model is also set to match the specified prior
distribution. For example, check the posterior value of the correlation parameter.

mdl.Rho

ans = 0.1000

Train Exponential Degradation Model Using Tabular Data
Load training data.
load('expTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a exponential degradation model with default settings.

mdl = exponentialDegradationModel;

Train the degradation model using the training data. Specify the names of the life time
and data variables.

fit(mdl,expTrainTables, "Time", "Condition")

Predict RUL Using Exponential Degradation Model

Load training data.

load('expTrainTables.mat")

2-21



2 Objects — Alphabetical List

2-22

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Hours" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create an exponential degradation model, specifying the life time variable units.

mdl = exponentialDegradationModel('LifeTimeUnit"', "hours");

Train the degradation model using the training data. Specify the names of the life time
and data variables.

fit(mdl,expTrainTables, "Time", "Condition")

Load testing testing data, which is a run-to-failure degradation profile for a test
component. The test data is a table with the same life time and data variables as the
training data.

load('expTestData.mat"')

Based on knowledge of the degradation feature limits, define a threshold condition
indicator value that indicates the end-of-life of a component.

threshold = 500;

Assume that you measure the component condition indicator after 150 hours. Predict the
remaining useful life of the component at this time using the trained exponential
degradation model. The RUL is the forecasted time at which the degradation feature will
pass the specified threshold.

estRUL = predictRUL(md1l,expTestData(150,:),threshold)

estRUL = duration
129.73 hr

The estimated RUL is around 130 hours, which indicates a total predicted life span of 280
hours.

Update Exponential Degradation Model and Predict RUL

Load observation data.
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load('expTestData.mat"')

For this example, assume that the training data is not historical data, but rather real-time
observations of the component condition.

Based on knowledge of the degradation feature limits, define a threshold condition
indicator value that indicates the end-of-life of a component.

threshold = 500;

Create an exponential degradation model arbitrary prior distribution data and a specified
noise variance. Also, specify the life time and data variable names for the observation
data.

mdl = exponentialDegradationModel('Theta',1, 'ThetaVariance',1le6, ...
'Beta', 1, 'BetaVariance',le6, ...
'NoiseVariance',0.003,...
'LifeTimeVariable',"Time", 'DataVariables',"Condition
'LifeTimeUnit', "hours");

Observe the component condition for 100 hours, updating the degradation model after
each observation.

for i=1:100
update(mdl,expTestData(i,:));
end

After 100 hours, predict the RUL of the component using the current life time value
stored in the model. Also, obtain the confidence interval associated with the estimated
RUL.

estRUL

predictRUL(mdl, threshold)

estRUL = duration
234.56 hr

The estimated RUL is about 234 hours, which indicates a total predicted life span of 334
hours.
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Algorithms

Exponential Degradation Model

TheexponentialDegradationModel object implements the following continuous-time
exponential degradation model:

B(t)t+e -
S(t)=¢+0(t)e[ (pre(t5)

where:

* ¢ is the model intercept, which is constant. You can initialize ¢ as the lower or upper
bound on the feasible region of the degradation variable using Phi. If the sign of 6 is:
* Positive, then ¢ is a lower bound.
* Negative, then ¢ is an upper bound.

* 0(t) is a random variable modeled as a bivariate Gaussian distribution with mean
Theta and variance ThetaVariance.

* B(t) is a random variable modeled as a bivariate Gaussian distribution with mean Beta
and variance BetaVariance.

o £(t) is the model additive noise and is modeled as a normal distribution with zero mean
and variance NoiseVariance.

* o0oisequal to NoiseVariance.

See Also

Functions
linearDegradationModel

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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fileEnsembleDatastore

Manage ensemble data in custom file format

Description

A fileEnsembleDatastore object is a datastore specialized for use in developing
algorithms for condition monitoring and predictive maintenance using measured data.

An ensemble is a collection of member data stored in a collection of files. The
fileEnsembleDatastore object specifies the data variables, independent variables,

and condition variables in the ensemble. You provide functions that tell the
fileEnsembleDatastore object how to read each type of variable from the collection of
files. Therefore, you can use fileEnsembleDatastore to manage ensemble data stored
in any file format or configuration of variables.

The data for a fileEnsembleDatastore object can be stored at any location supported
by MATLAB datastores, including remote locations, such as cloud storage using Amazon
S3 (Simple Storage Service), Windows Azure Blob Storage, and Hadoop Distributed File
System (HDFS).

For a detailed example illustrating the use of a custom ensemble datastore, see “File
Ensemble Datastore With Measured Data”. For general information about data ensembles

in Predictive Maintenance Toolbox, see “Data Ensembles for Condition Monitoring and
Predictive Maintenance”.

Creation

Syntax

fensemble
fensemble

fileEnsembleDatastore(location,extension)
fileEnsembleDatastore(location,extension,Name,Value)
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Description

fensemble = fileEnsembleDatastore(location,extension) creates a
fileEnsembleDatastore object that points to data at the file path specified by
location and having the specified file extension. Set properties of the object to specify
the functions for reading different types of variables.

fensemble = fileEnsembleDatastore(location,extension,Name,Value)
specifies additional properties on page 2-26 of the object using one or more name-value
pair arguments. For example, using ' IndependentVariables', ["Age";"ID"]
specifies the independent variables when you create the object.

Input Arguments

location — File path
string | character vector

File path from which to read ensemble data, specified as a string or a character vector,
and specifying the directory where all the data is stored. The file path can be any location
supported by MATLAB datastores, including an IRI path pointing to a remote location,
such as cloud storage using Amazon S3 (Simple Storage Service), Windows Azure Blob
Storage, and Hadoop Distributed File System (HDFS). For more information about
working with remote data in MATLAB, see “Read Remote Data” (MATLAB).

Example: pwd + "\simResults"

extension — File extension
string | character vector

File extension for files in the data store, specified as a string or a character vector.

Example: ".mat",".csv"

Properties

DataVariablesFcn — Function for reading data variables
[ 1 (default) | function handle

Function for reading data variables from the ensemble, specified as a handle to a function
you provide. You write a function that instructs the software how to read data variables
from a data file containing a member of your ensemble. The function has:
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* Two inputs, a file name (string), and the names of signals (string vector) to load from
the file

* One output, a table row with table variables for each data variable

The function handle you use for data variables can be the same as or different from the
ones you use for condition variables and independent variables.

For example, suppose that you write the following function, readDataVars, for reading
data variables from your files. This function creates a data table containing the variables
in a data file that match those in the input string, variables.

function data = readDataVars(filename,variables)
data = table();
mfile = matfile(filename); % Allows partial loading
for ct=1:numel(variables)

val = mfile. (variables{ct});

if numel(val) > 1

val = {val};

end

data. (variables{ct}) = val;
end
end

Save the function in a MATLAB file in the current folder or on the path. Then, if you
create a fileEnsembleDatastore called fensemble, set this property as follows.

fensemble.DataVariablesFcn = @readDataVars;

When you call read (ensemble), the software uses readDataVars to read any variables
in the SelectedVariables property of the ensemble that are also named in
DataVariables.

Your function can include any MATLAB command for reading data from files, such as
csvread (comma-separated values), x1sread Microsoft® Excel® spreadsheets, or other
data import commands.

You must set this property to read data variables from a fileEnsembleDatastore
object. Otherwise, read(ensemble) generates an error.

ConditionVariablesFcn — Function for reading condition variables
[ 1 (default) | function handle

Function for reading condition variables from the ensemble, specified as a handle to a
function you provide. You write a function that instructs the software how to read
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condition variables from a data file containing a member of your ensemble. The function
has:

+ Two inputs, a file name (string), and the names of signals (string vector) to load from
the file

* One output, a table row with table variables for each condition variable

The function handle you use for condition variables can be the same as or different from
the ones you use for data variables and independent variables.

For example, suppose that you write a function called readCondVars for reading
condition variables from your files. Similarly to the DataVariablesFcn property, store
the function in a MATLAB file in the current folder or on the path. Then, if you create a
fileEnsembleDatastore called fensemble, set ConditionVariablesFcn as follows.

fensemble.ConditionVariablesFcn = @readCondVars;

When you call read (ensemble), the software uses readCondVars to read any variables
in the SelectedVariables property of the ensemble that are also named in
ConditionVariables.

You must set this property to read condition variables from a fileEnsembleDatastore
object. Otherwise, read (ensemble) generates an error.

IndependentVariablesFcn — Function for reading independent variables
[1 (default) | function handle

Function for reading independent variables from the ensemble, specified as a handle to a
function you provide. You write a function that instructs the software how to read
independent variables from a data file containing a member of your ensemble. The
function has:

« Two inputs, a file name (string), and the names of signals (string vector) to load from
the file
* One output, a table row with table variables for each independent variable

The function handle you use for independent variables can be the same as or different
from the ones you use for condition variables and data variables.

For example, suppose that you write a function called readIndVars for reading
independent variables from your files. Similarly to the DataVariablesFcn property,
store the function in a MATLAB file in the current folder or on the path. Then, if you
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create a fileEnsembleDatastore called fensemble, set
IndependentVariablesFcn as follows.

fensemble.IndependentVariablesFcn = @readIndVars;

When you call read (ensemble), the software uses readDataVars to read any variables
in the SelectedVariables property of the ensemble that are also named in
IndependentVariables.

You must set this property to read independent variables from a
fileEnsembleDatastore object. Otherwise, read (ensemble) generates an error.

writeToMemberFcn — Function for adding data
[ 1 (default) | function handle

Function for writing data to the last-read member of the ensemble, specified as a handle
to a function you provide. You write a function that instructs the software how to write
variables to a data file containing a member of your ensemble. The function has:

* Two inputs, a filen ame (string), and a data structure whose field names are the data
variables to write, and whose values are the corresponding values
* No outputs

For example, suppose that you write the following function, writeNewData, for writing
data to your files. This function writes an input data structure to the specified data file.

function writeNewData(filename,data)
save(filename, '-append', '-struct', 'structData');
end

Store writeNewData in a MATLAB file in the current folder or on the path. Then, if you
create a fileEnsembleDatastore called fensemble, set AddVariablesFcn as
follows:

fensemble.AddVariablesFcn = @writeNewData;

When you call the writeToLastMemberRead command on fensemble, the software
uses writeNewData to add the new data to the data file of the last-read ensemble
member.

You must set this property to add data to a fileEnsembleDatastore member.
Otherwise, writeToLastMemberRead generates an error.
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DataVariables — Data variables in the ensemble
[ 1 (default) | string array

Data variables in the ensemble, specified as a string array. Data variables are the main
content of the members of an ensemble. Data variables can include measured data or
derived data for analysis and development of predictive maintenance algorithms. For
example, your data variables might include measured or simulated vibration signals and
derived values such as mean vibration value or peak vibration frequency.

You can also specify DataVariables using a cell array of character vectors, such as
{'Vibration'; 'Tacho'}, but the variable names are always stored as a string array,
["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is
flattened to a column vector.

IndependentVariables — Independent variables in the ensemble
[ 1 (default) | string array

Independent variables in the ensemble, specified as a string array. You typically use
independent variables to order the members of an ensemble. Examples are timestamps,
number of operating hours, or miles driven. Set this property to the names of such
variables in your ensemble.

You can also specify IndependentVariables using a cell array of character vectors,
such as {'Time"'; 'Age'}, but the variable names are always stored as a string array,
["Time";"Age"]. If you specify a matrix of variable names, the matrix is flattened to a
column vector.

ConditionVariables — Condition variables in the ensemble
[1 (default) | string array

Condition variables in the ensemble, specified as a string array. Use condition variables to
label the members in a ensemble according to the fault condition or other operating
condition under which the ensemble member was collected.

You can also specify ConditionVariables using a cell array of character vectors, such
as {'Gear Fault';'Temperature'}, but the variable names are always stored as a
string array, ["Gear Fault";"Temperature"]. If you specify a matrix of variable
names, the matrix is flattened to a column vector.

SelectedVariables — Variables to read
[ 1 (default) | string array
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Variables to read from the ensemble, specified as a string array. Use this property to
specify which variables are extracted to the MATLAB workspace when you use the read
command to read data from the current member ensemble. read returns a table row
containing a table variable for each name specified in SelectedVariables. For
example, suppose that you have an ensemble, ensemble, that contains six variables, and
you want to read only two of them, Vibration and Fault State. Set the
SelectedVariables property and call read:

ensemble.SelectedVariables = ["Vibration";"Fault State"];
data = read(ensemble)

SelectedVariables must be a subset of the variables in the DataVariables,
ConditionVariables, and IndependentVariables properties. If
SelectedVariables is empty, read generates an error.

You can specify SelectedVariables using a cell array of character vectors, such as
{'Vibration'; 'Tacho'}, but the variable names are always stored as a string array,
["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is
flattened to a column vector.

NumMembers — Number of members in ensemble
positive integer

This property is read-only.
Number of members in the ensemble, specified as a positive integer.

LastMemberRead — File name of last ensemble member read
"" (default) | string

This property is read-only.

File name of last ensemble member read into the MATLAB workspace, specified as a
string. When you use the read command to read data from an ensemble datastore, the
software determines which ensemble member to read next, and reads data from the
corresponding file. When you call writeToLastMemberRead to add data back to the
ensemble datastore, that function writes to the last member read. The LastMemberRead
property contains the path to the file to which writeToLastMemberRead writes.
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Object Functions

The read and writeToLastMemberRead functions are specialized for Predictive
Maintenance Toolbox ensemble data. Other functions, such as reset and hasdata, are
identical to those used with datastore objects in MATLAB.

read Read member data from an ensemble datastore
writeToLastMemberRead Write data to member of an ensemble datastore
reset Reset datastore to initial state

hasdata Determine if data is available to read

progress Determine how much data has been read
numpartitions Number of datastore partitions

partition Partition a datastore

tall Create tall array

Examples

Create and Configure File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB® files, and configure it with
functions that tell the software how to read from and write to the datastore.

For this example, you have two data files containing healthy operating data from a
bearing system, baseline 01.mat and baseline 02.mat. You also have three data
files containing faulty data from the same system, FaultData 01.mat,

FaultData 02.mat, and FaultData 03.mat. (Because of the volume of data, the
unzip operation takes several minutes.) In practice you might have many more data files.

unzip fileEnsData.zip % extract compressed files
location = pwd;

extension = '.mat';

fensemble = fileEnsembleDatastore(location,extension);

Before you can interact with data in the ensemble, you must create functions that tell the
software how to process the data files to read variables into MATLAB® workspace and to
write data back to the files. Save these functions to a location on the file path. For this
example, use the following functions:

* readBearingData — Parse the data in the file, and return a table row containing a
table variable for each data variable in the file.
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* writeBearingData — Write a table row to a data file.

For more information about these functions, see “File Ensemble Datastore With Measured
Data”.

addpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Make sure functions are

fensemble.DataVariablesFcn
fensemble.WriteToMemberFcn

@readBearingData;
@writeBearingData;

Finally, set properties of the ensemble to identify the data variables and the selected
variables for reading. For this example, the variables in the data file are gs, sr, load,
and rate. Suppose that you only need to read gs and sr. Set these two variables as the
selected variables.

fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.SelectedVariables = ["gs";"sr"];

Examine the ensemble. The functions and the variable names are assigned to the
appropriate properties.

fensemble

fensemble =
fileEnsembleDatastore with properties:

DataVariablesFcn: @readBearingData
ConditionVariablesFcn: []
IndependentVariablesFcn: []
WriteToMemberFcn: @writeBearingData
DataVariables: [4x1 string]

IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]
SelectedVariables: [2x1 string]
NumMembers: 5
LastMemberRead: [0x0 string]

These functions that you assigned tell the read and writeTolLastMemberRead
commands how to interact with the data files that make up the ensemble. For example,
when you call read, it reads all the variables named in
fensemble.SelectedVariables. The read command uses @readBearingData to
read selected variables that are in fensemble.DataVariables. For more information,
see “File Ensemble Datastore With Measured Data”.
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rmpath(fullfile(matlabroot, 'examples’', 'predmaint', 'main')) % Reset path

Read from and Write to a File Ensemble Datastore

Create a file ensemble datastore for data stored in MATLAB® files, and configure it with
functions that tell the software how to read from and write to the datastore. (For more
details about configuring file ensemble datastores, see “File Ensemble Datastore With
Measured Data”.) Because of the volume of data, the unzip operation takes a few
minutes.

% Create ensmeble datastore that points to datafiles in current folder
unzip fileEnsData.zip % extract compressed files

location = pwd;

extension = '.mat';

fensemble = fileEnsembleDatastore(location,extension);

% Configure with functions for reading and writing variable data
addpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Make sure functions are
fensemble.DataVariablesFcn = @readBearingData;

fensemble.WriteToMemberFcn @writeBearingData;

% Specify data and selected variables
fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.SelectedVariables = ["gs";"load"];

Read the first member of the ensemble. The functions that you assigned tell the read and
writeToLastMemberRead commands how to interact with the data files that make up
the ensemble. Thus, when you call read, it reads all the variables named in
fensemble.SelectedVariables. The read command uses @readBearingData to
read selected variables that are in fensemble.DataVariables. For this example,
@readBearingData extracts the data variables from a structure, bearing, that is stored
in the file.

data = read(fensemble)

data=1x2 table
gs load

[146484x1 double] 0
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You can now process the data from the member as needed. For this example, compute the
average value of the signal stored in the variable gs. Extract the data from the table
returned by read.

gsdata
gsmean

= data.gs{1l};

= mean(gsdata);

You can write the mean value gsmean back to the data file as a new variable. To do so,
first expand the list of data variables in the ensemble to include a variable for the new
value. Call the new variable gsMean.

fensemble.DataVariables = [fensemble.DataVariables; "gsMean"]

fensemble =
fileEnsembleDatastore with properties:

DataVariablesFcn: @readBearingData
ConditionVariablesFcn: []
IndependentVariablesFcn: []
WriteToMemberFcn: @writeBearingData
DataVariables: [5x1 string]

IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]
SelectedVariables: [2x1 string]
NumMembers: 5
LastMemberRead: '\\fs-21-ah\home$\clevy\Documents\MATLAB\examples\predmai

Next, write the derived mean value to the file corresponding to the last-read ensemble
member. (See “Data Ensembles for Condition Monitoring and Predictive Maintenance”.)
When you call writeToLastMemberRead, it uses fensemble.WriteToMemberFcn to
write the table data to the file. In this example, WriteToMemberFcn is
writeBearingData, a simple function that takes a data structure and adds it to
whatever other data is already present in the data file.

newData = struct('gsMean',gsmean);
writeTolLastMemberRead(fensemble, 'gsMean',newData);

Calling read again advances the last-read-member indictor to the next file in the ensemble
and reads the data from that file.

data = read(fensemble)

data=1x2 table
gs load
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[146484x1 double] 50

You can see that this data is from a different member by examining the load variable in
the table. Here, its value is 50, while in the previously read member, it was 0.

You can repeat the processing steps to compute and append the mean for this ensemble
member. In practice, it is more useful to automate the process of reading, processing, and
writing data. To do so, reset the ensemble to a state in which no data has been read. Then
loop through the ensemble and perform the read, process, and write steps for each
member.

reset (fensemble)
while hasdata(fensemble)
data = read(fensemble);
gsdata data.gs{1l};
gsmean mean(gsdata);
newData = struct('gsMean',gsmean);
writeToLastMemberRead(fensemble, 'gsMean',newData);
end

The hasdata command returns false when every member of the ensemble has been read.
Now, each data file in the ensemble includes the gsMean variable derived from the data
gs in that file. You can use techniques like this loop to extract and process data from your
ensemble files as you develop a predictive-maintenance algorithm. For an example
illustrating in more detail the use of a file ensemble datastore in the algorithm-
development process, see “Rolling Element Bearing Fault Diagnosis”.

To confirm that the derived variable is present in the file ensemble datastore, read it from
the first and second ensemble members. To do so, reset the ensemble again, and add the
new variable to the selected variables. In practice, after you have computed derived
values, it can be useful to read only those values without rereading the unprocessed data,
which can take significant space in memory. For this example, read selected variables that
include the new variable, gsMean, but do not include the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["load";"gsMean"];
datal = read(fensemble)

datal=1Ix2 table
load gsMean
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0 [1x1 struct]

data2 = read(fensemble)

data2=1x2 table
load gsMean

50 [1x1 struct]

rmpath(fullfile(matlabroot, 'examples', 'predmaint', 'main')) % Reset path

See Also

generateSimulationEnsemble | simulationEnsembleDatastore

Topics
“Data Ensembles for Condition Monitoring and Predictive Maintenance”
“File Ensemble Datastore With Measured Data”

Introduced in R2018a
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hashSimilarityModel

Hashed-feature similarity model for estimating remaining useful life

Description

Use hashSimilarityModel to estimate the remaining useful life (RUL) of a component
using a hashed-feature similarity model. This model is useful when you have run-to-failure
degradation path histories for an ensemble of similar components, such as multiple
machines manufactured to the same specifications, and the data set is large. The hashed-
feature similarity model transforms the historical degradation path data for each
ensemble member into a series of hashed- features, such as the mean, power, minimum,
or maximum values for the data. You can then compute the hashed features of a test
component and compare them to the hashed features of the ensemble data members.

To configure a hashSimilarityModel object, use fit, which computes and stores the
hashed feature values of the ensemble data members. Once you configure the parameters
of your similarity model, you can then predict the remaining useful life of similar
components using predictRUL. For similarity models, the RUL of the test component is
estimated as the median statistic of the life time span of the most similar components
minus the current life time value of the test component.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl
mdl
mdl

hashSimilarityModel
hashSimilarityModel(initModel)
hashSimilarityModel(  ,Name,Value)
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Description

mdl = hashSimilarityModel creates a hashed-feature similarity model for estimating
RUL and initializes the model with default settings.

mdl = hashSimilarityModel(initModel) creates a hashed-feature similarity model
and initializes the model parameters using an existing hashSimilarityModel object
initModel.

mdl = hashSimilarityModel(  ,Name,Value) specifies user-settable model
properties using name-value pairs. For example,
hashSimilarityModel('LifeTimeUnit"', "days") creates a hashed-feature
similarity model with that uses days as a life time unit. You can specify multiple name-
value pairs. Enclose each property name in quotes.

Input Arguments

initModel — Hashed-feature similarity model
hashSimilarityModel object

Hashed-feature similarity model, specified as a hashSimilarityModel object.

Properties

HashTable — Hashed feature values
N-by-M array

This property is read-only.

Hashed feature values generated by the fit function, specified as N-by-M array, where M
is the number of ensemble members and N is the number of hashed features.
HashTable(i, j) contains the hashed feature value of jth feature computed for the ith
data member.

To specify the method for computing the hashed features, use the Method property of the
model.

RegimeSplit — Breakpoints for splitting historical data into multiple regimes
row vector of doubles (default) | [ ] | row vector of duration objects | row vector of
datetime objects
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Breakpoints for splitting historical data into multiple regimes, specified as a row vector of
double values, duration objects, or datetime objects. The row vector of breakpoints
must:

* Be in increasing order.

* Have units and a format that is compatible with the training data used with the fit
function.

To use a single regime, specify RegimeSplitas [].

A separate hash table is generated for each regime. The RUL prediction is based on the
similarity to the hashed features in the regime to which the test data belongs. If you
change the value of RegimeSplit, then you must retrain your model using fit.

You can specify RegimeSplit:

* Using a name-value pair when you create the model.
» Using dot notation after model creation.

LifeSpan — Ensemble member life spans
double vector (default) | vector of duration objects

This property is read-only.

Ensemble member life spans, specified as a double vector or duration object vector and
computed from the ensemble member degradation profiles by the fit function.

NumNearestNeighbors — Number of nearest neighbors for RUL estimation
Inf (default) | finite positive integer

Number of nearest neighbors for RUL estimation, specified as Inf or a finite positive
integer. If NumNearestNeighbors is Inf, then predictRUL uses all the ensemble
members during estimation.

You can specify NumNearestNeighbors:

» Using a name-value pair when you create the model.
* Using dot notation after model creation.

Method — Hashed feature computation method
"minmaxstd" (default) | function handle
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Hashed feature computation method, specified as one of the following:

* "minmaxstd" — Extract the minimum, maximum, and standard deviation of the data.
This option omits observations that contain NaN. When you use this method,
HashTable is M-by-3, where M is the number of ensemble members.

* Function handle — Use a custom function that takes degradation data as a column
vector, table, or timetable, and returns a row vector of features. For example:

mdl.Method = @(x) [mean(x),std(x),kurtosis(x),median(x)]
You can specify Method:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Distance — Distance computation method
"euclidian" (default) | "absolute" | function handle

Distance computation method, specified as one of the following:

e« "euclidian" — Use the 2-norm of the difference between hash vectors.
 "absolute" — Use the 1-norm of the difference between hash vectors.
e Function handle — Use a custom function of the form:

D = distanceFunction(xTest,xEnsemble)
Here,
* XxTest is a column vector of length N that contains test component hashed

features, where N is the number of hashed features.

* XxEnsemble is an M-by-N array of ensemble component hashed features, where M
is the number of ensemble components. xEnsemble (i, :) contains the hashed
features for the ith ensemble member.

* Dis arow vector of length M, where D(1) is the distance between the test feature
vector and the feature vector of the ith ensemble member.

You can specify Distance:

» Using a name-value pair when you create the model.
* Using dot notation after model creation.
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IncludeTies — Flag to include ties
true (default) | false

Flag to include ties, specified as true or false. When IncludeTies is true, the model
includes all neighbors whose distance to the test component data is less than the Kth
smallest distance, where K is equal to NumNearestNeigbors.

You can specify IncludeTies:

» Using a name-value pair when you create the model.
* Using dot notation after model creation.

Standardize — Flag for standardizing feature data
false (default) | true

Flag for standardizing feature data before generating hashed features, specified as true
or false. When Standardize is true, the feature data is standardized such that feature
X becomes (X-mean(X))/std(X).

You can specify Standardize:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

LifeTimeVariable — Life time variable
"" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name or

When you train the model using the fit function, if your training data is a:

* table, then LifeTimeVariable must match one of the variable names in the table.
 timetable, then LifeTimeVariable one of the variable names in the table or the
dimension name of the time variable, data.Properties.DimensionNames{1}.

You can specify LifeTimeVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.
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LifeTimeUnit — Life time variable units
""" (default) | value

Life time variable units, specified as a string.

The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).

DataVariables — Degradation variable names
"" (default) | string | string array

Degradation variable names, specified as a string or string array. The strings in
DataVariables must be valid MATLAB variable name.

You can specify DataVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing for hash table generation by the fit function, specified
as either true or false.

You can specify UseParallel:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.
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* Using dot notation after model creation.

Object Functions

predictRUL Estimate remaining useful life for a test component

fit Estimate parameters of remaining useful life model using historical data
compare Compare test data to historical data ensemble for similarity models
Examples

Train Hash Similarity Model
Load training data.
load('hashTrainVectors.mat")

The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create a hash similarity model with default settings. By default, the hashed features used
by the model are the signal maximum, minimum, and standard deviation values.

mdl = hashSimilarityModel;
Train the similarity model using the training data.

fit(md1l, hashTrainVectors)

Train Hash Similarity Model Using Tabular Data
Load training data.
load('hashTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.



hashSimilarityModel

Create a hash similarity model that uses the following values as hashed features:
mdl = hashSimilarityModel( 'Method',@(x) [mean(x),std(x),kurtosis(x),median(x)]);

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(mdl,hashTrainTables, "Time","Condition")

Predict RUL Using Hash Similarity Model

Load training data.

load('hashTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a hash similarity model that uses hours as a life time unit and the following values
as hashed features:

* Mean

* Standard deviation

* Kurtosis

* Median

mdl = hashSimilarityModel('Method',@(x) [mean(x),std(x),kurtosis(x),median(x)],...

'LifeTimeUnit', "hours");

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(mdl,hashTrainTables,"Time", "Condition")

Load testing data. The test data contains the degradation feature measurements for a test
component up to the current life time.

load('hashTestData.mat"')

Predict the RUL of the test component using the trained similarity model.
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estRUL = predictRUL(md1l,hashTestData)

estRUL = duration
175.69 hr

The estimated RUL for the component is around 176 hours.

See Also

Functions
pairwiseSimilarityModel | residualSimilarityModel

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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linearDegradationModel

Linear degradation model for estimating remaining useful life

Description

Use linearDegradationModel to model a linear degradation process for estimating the
remaining useful life (RUL) of a component. Degradation models estimate the RUL by
predicting when a monitored signal will cross a predefined threshold. Linear degradation
models are useful when the monitored signal is a log scale signal or when the component
does not experience cumulative degradation. For more information on the degradation
model, see “Linear Degradation Model” on page 2-56.

To configure a LinearDegradationModel object for a specific type of component, you
can:

* Estimate the model prior parameters using historical data regarding the health of an
ensemble of similar components, such as multiple machines manufactured to the same
specifications. To do so, use fit.

* Specify the model prior parameters when you create the model based on your
knowledge of the component degradation process.

Once you configure the parameters of your degradation model, you can then predict the
remaining useful life of similar components using predictRUL.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl
mdl

linearDegradationModel
linearDegradationModel (Name,Value)
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Description

mdl = linearDegradationModel creates a linear degradation model for estimating
RUL and initializes the model with default settings.

mdl = linearDegradationModel (Name,Value) specifies user-settable model
properties using name-value pairs. For example,

linearDegradationModel( 'NoiseVariance',0.5) creates a linear degradation
model with a model noise variance of 0.5. You can specify multiple name-value pairs.
Enclose each property name in quotes.

Properties

Theta — Current mean value of slope parameter
scalar

This property is read-only.

Current mean value of slope parameter 6 in the degradation model, specified as a scalar.
For more information on the degradation model, see “Linear Degradation Model” on page
2-56.

You can specify Theta using a name-value pair argument when you:

* Create the model.
* Reset the model using the restart function.

Otherwise, the value of Theta changes when you use the update function.

ThetaVariance — Current variance of slope parameter
nonnegative scalar

This property is read-only.
Current variance of slope parameter 0 in the degradation model, specified as a
nonnegative scalar. For more information on the degradation model, see “Linear

Degradation Model” on page 2-56.

You can specify ThetaVariance using a name-value pair argument when you:
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* Create the model.
* Reset the model using the restart function.

Otherwise, the value of ThetaVariance changes when you use the update function.

Phi — Current intercept value
scalar

Current intercept value ¢ for the degradation model, specified as a scalar. For more
information on the degradation model, see “Linear Degradation Model” on page 2-56.

You can specify Phi using a name-value pair argument when you create the model.
Otherwise, the value of Phi changes when you estimate the model prior using the fit
function.

Prior — Prior information about model parameters
structure

Prior information about model parameters, specified as a structure with the following
fields:

* Theta — Mean value of slope parameter

* ThetaVariance — Variance of slope parameter

You can specify the fields of Prior:
*  When you create the model. When you specify Theta or ThetaVariance at model
creation using name-value pairs, the corresponding field of Prior is also set.

» Using the fit function. In this case, the prior values are derived from the data used to
fit the model.

* Using the restart function. In this case, the current values of Theta and
ThetaVariance are copied to the corresponding fields of Prior.

* Using dot notation after model creation.

For more information on the degradation model, see “Linear Degradation Model” on page
2-56.

NoiseVariance — Variance of additive noise
1 (default) | nonnegative scalar
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Variance of additive noise ¢ in the degradation model, specified as a nonnegative scalar.
For more information on the degradation model, see “Linear Degradation Model” on page
2-56.

You can specify NoiseVariance:

* Using a name-value pair when you create the model.
* Using a name-value pair with the restart function.
* Using dot notation after model creation.

SlopeDetectionLevel — Slope detection level
0.05 (default) | scalar value in the range [0,1] | []

Slope detection level for determining the start of the degradation process, specified as a
scalar in the range [0,1]. This value corresponds to the alpha value in a t-test of slope
significance.

To disable the slope detection test, set SLopeDetectionLevel to [].

You can specify SlopeDetectionlLevel:

* Using a name-value pair when you create the model.
* Using a name-value pair with the restart function.
* Using dot notation after model creation.

SlopeDetectionInstant — Slope detection time
[1 (default) | scalar

This property is read-only.
Slope detection time, which is the instant when a significant slope is detected, specified
as a scalar. The update function sets this value when SlopeDetectionLevel is not

empty.

CurrentMeasurement — Latest degradation feature value
scalar

This property is read-only.

Latest degradation feature value supplied to the update function, specified as a scalar.
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InitialLifeTimeValue — Initial life time variable value
scalar | duration object

This property is read-only.

Initial life time variable value when the update function is first called on the model,
specified as a scalar.

When the model detects a slope, the InitiallLifeTime value is changed to match the
SlopeDetectionInstant value.

CurrentLifeTimeValue — Current life time variable value
scalar | duration object

This property is read-only.
Latest life time variable value supplied to the update function, specified as a scalar.

LifeTimeVariable — Life time variable
"" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name or

When you train the model using the fit function, if your training data is a:

* table, then LifeTimeVariable must match one of the variable names in the table.

 timetable, then LifeTimeVariable one of the variable names in the table or the
dimension name of the time variable, data.Properties.DimensionNames{1}.

You can specify LifeTimeVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

LifeTimeUnit — Life time variable units
"" (default) | value

Life time variable units, specified as a string.
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The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).

DataVariables — Degradation variable name
""" (default) | string

Degradation variable name, specified as a string that contains a valid MATLAB variable
name. Degradation models have only one data variable.

You can specify DataVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing when fitting prior values from data, specified as either
true or false.

You can specify UseParallel:

* Using a name-value pair when you create the model.
* Using a name-value pair with the restart function.

* Using dot notation after model creation.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.

* Using dot notation after model creation.
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Object Functions

fit Estimate parameters of remaining useful life model using historical data

predictRUL Estimate remaining useful life for a test component

update Update posterior parameter distribution of degradation remaining useful
life model

restart Reset remaining useful life degradation model

Examples

Train Linear Degradation Model
Load training data.
load('linTrainVectors.mat"')

The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create a linear degradation model with default settings.
mdl = linearDegradationModel;
Train the degradation model using the training data.

fit(mdl,linTrainVectors)

Create Linear Degradation Model with Known Priors
Create a linear degradation model and configure it with a known prior distribution.
mdl = linearDegradationModel('Theta',0.25, 'ThetaVariance',0.002);

The specified prior distribution parameters are stored in the Prior property of the
model.

mdl.Prior

ans = struct with fields:
Theta: 0.2500
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ThetaVariance: 0.0020

The current posterior ditribution of the model is also set to match the specified prior
distribution. For example, check the posterior value of the slope variance.

mdl.ThetaVariance

ans = 0.0020

Train Linear Degradation Model Using Tabular Data
Load training data.
load('linTrainTables.mat")

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a linear degradation model with default settings.

mdl = linearDegradationModel;

Train the degradation model using the training data. Specify the names of the life time
and data variables.

fit(mdl,linTrainTables, "Time", "Condition")

Predict RUL Using Linear Degradation Model
Load training data.
load('linTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a linear degradation model, specifying the life time variable units.
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mdl = linearDegradationModel('LifeTimeUnit',"hours");

Train the degradation model using the training data. Specify the names of the life time
and data variables.

fit(mdl,linTrainTables, "Time", "Condition")

Load testing testing data, which is a run-to-failure degradation profile for a test
component. The test data is a table with the same life time and data variables as the
training data.

load('linTestData.mat', 'linTestDatal')

Based on knowledge of the degradation feature limits, define a threshold condition
indicator value that indicates the end-of-life of a component.

threshold = 60;

Assume that you measure the component condition indicator after 48 hours. Predict the
remaining useful life of the component at this time using the trained linear degradation
model. The RUL is the forecasted time at which the degradation feature will pass the
specified threshold.

estRUL = predictRUL(mdl,linTestDatal(48,:),threshold)

estRUL = duration
69.988 hr

The estimated RUL is around 70 hours, which indicates a total predicted life span of 118
hours.

Update Linear Degradation Model and Predict RUL

Load observation data.

load('linTestData.mat', 'linTestDatal')

For this example, assume that the training data is not historical data, but rather real-time
observations of the component condition.
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Based on knowledge of the degradation feature limits, define a threshold condition
indicator value that indicates the end-of-life of a component.

threshold = 60;

Create a linear degradation model arbitrary prior distribution data and a specified noise
variance. Also, specify the life time and data variable names for the observation data.

mdl = linearDegradationModel('Theta',1, 'ThetaVariance',1le6, 'NoiseVariance',0.003,...
'LifeTimeVariable',"Time", 'DataVariables', "Condition", ...
'LifeTimeUnit', "hours");

Observe the component condition for 50 hours, updating the degradation model after
each observation.

for i=1:50
update(mdl, linTestDatal(i,:));
end

After 50 hours, predict the RUL of the component using the current life time value stored
in the model.

estRUL predictRUL(mdl, threshold)

estRUL = duration
59.406 hr

The estimated RUL is about 60 hours, which indicates a total predicted life span of 110
hours.

Algorithms

Linear Degradation Model

ThelinearDegradationModel object implements the following continuous-time linear
degradation model:

S(t)=9+06(t)t+e(¢)

where:
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* ¢ is the model intercept, which is constant. You can initialize ¢ as the nominal value of
the degradation variable using Phi.

* 0O(t) is the model slope and is modeled as a random variable with a normal distribution
with mean Theta and variance ThetaVariance.

o £(t) is the model additive noise and is modeled as a normal distribution with zero mean
and variance NoiseVariance.

See Also

Functions
exponentialDegradationModel

Topics
“Models for Predicting Remaining Useful Life

”

Introduced in R2018a

2-57



2 Objects — Alphabetical List

2-58

pairwiseSimilarityModel

Pairwise comparison-based similarity model for estimating remaining useful life

Description

Use pairwiseSimilarityModel to estimate the remaining useful life (RUL) of a
component using a pairwise comparison-based similarity model. This model compares the
degradation profile of a test component directly to the degradation path histories for an
ensemble of similar components, such as multiple machines manufactured to the same
specifications. The similarity of the test component to the ensemble members is a function
of the distance between the degradation profile and the ensemble member profile, which
is computed using correlation or dynamic time warping.

To configure a pairwiseSimilarityModel object, use fit. Once you configure the
parameters of your similarity model, you can then predict the remaining useful life of
similar components using predictRUL. For similarity models, the RUL of the test
component is estimated as the median statistic of the life time span of the most similar
components minus the current life time value of the test component.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl
mdl
mdl

pairwiseSimilarityModel
pairwiseSimilarityModel(initModel)
pairwiseSimilarityModel(  ,Name,Value)

Description

mdl = pairwiseSimilarityModel creates a pairwise comparison-based similarity
model for estimating RUL and initializes the model with default settings.
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mdl = pairwiseSimilarityModel(initModel) creates a pairwise comparison-based
similarity model and initializes the model parameters using an existing
pairwiseSimilarityModel object initModel.

mdl = pairwiseSimilarityModel(  ,Name,Value) specifies user-settable model
properties using name-value pairs. For example,
hashSimilarityModel('LifeTimeUnit', "days") creates a pairwise comparison-
based similarity model that uses days as a life time unit. You can specify multiple name-
value pairs. Enclose each property name in quotes.

Input Arguments

initModel — Pairwise comparison-based similarity model
pairwiseSimilarityModel object

Pairwise comparison-based similarity model, specified as a pairwiseSimilarityModel
object.

Properties

Method — Time series distance computation method
“correlation" (default) | "dtw"

Time series distance computation method, specified as one of the following:

* "correlation" — Measure distance using correlation

+ "dtw" — Compute distance using dynamic time warping. For more information, see
dtw.

You can specify Method:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Distance — Distance formula for "dtw"
"euclidian" (default) | "absolute"

Distance formula for "dtw" distance computation method, specified as one of the
following:
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e« "euclidian" — Use the 2-norm of the difference between residuals.
 "absolute" — Use the 1-norm of the difference between residuals.

You can specify Distance:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

HistorySpan — Life time span of historical data
Inf (default) | positive scalar | duration object

Life time span of historical data for computing similarity, specified as a positive scalar or
duration object. When computing similarity, the model uses historical data from life
time (t-HistorySpan) to life time t, where t is the current life time.

You can specify HistorySpan:

» Using a name-value pair when you create the model.
* Using dot notation after model creation.

WithinRangeRatio — Factor determining ensemble member exclusion rule
1 (default) | scalar from 0 through 1

Factor determining ensemble member exclusion rule for similarity computation, specified
as a scalar from 0 through 1. WithinRangeRatio is used when the length of the test
data and the length of the ensemble member data do not match, which happens near end-
of-life time values of historical data. When WithinRangeRatio is 1, then there is no
exclusion of ensemble members.

Suppose that the length of the shorter data is P and the length of the longer data is Q.
Then, a similarity test is performed only if Q(1-WithinRangeRatio) <=P <= Q.
Otherwise, the ensemble member is ignored.

You can specify WithinRangeRatio:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

LifeSpan — Ensemble member life spans
double vector (default) | vector of duration objects

This property is read-only.
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Ensemble member life spans, specified as a double vector or duration object vector and
computed from the ensemble member degradation profiles by the fit function.

NumNearestNeighbors — Number of nearest neighbors for RUL estimation
Inf (default) | finite positive integer

Number of nearest neighbors for RUL estimation, specified as Inf or a finite positive
integer. If NumNearestNeighbors is Inf, then predictRUL uses all the ensemble
members during estimation.

You can specify NumNearestNeighbors:

» Using a name-value pair when you create the model.
* Using dot notation after model creation.

IncludeTies — Flag to include ties
true (default) | false

Flag to include ties, specified as true or false. When IncludeTies is true, the model
includes all neighbors whose distance to the test component data is less than the Kth
smallest distance, where K is equal to NumNearestNeigbors.

You can specify IncludeTies:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Standardize — Flag for standardizing feature data
false (default) | true | 'time-varying'

Flag for standardizing feature data before computing distance, specified as true, false,
or 'time-varying'.

When Standardize is true, the feature data is standardized such that feature X
becomes (X-mean(X))/std(X).

When Standardizeis 'time-varying', the feature data is standardized such that
feature X(t) becomes (X(t) -M(t)) / S(t).. Here, M(t) and S(t) are running estimates of the
mean and standard deviation of the data.

You can specify Standardize:
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* Using a name-value pair when you create the model.
* Using dot notation after model creation.

LifeTimeVariable — Life time variable
""" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name or

When you train the model using the fit function, if your training data is a:

 table, then LifeTimeVariable must match one of the variable names in the table.

 timetable, then LifeTimeVariable one of the variable names in the table or the
dimension name of the time variable, data.Properties.DimensionNames{1}.

You can specify LifeTimeVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

LifeTimeUnit — Life time variable units
"" (default) | value

Life time variable units, specified as a string.

The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).

DataVariables — Degradation variable names
"" (default) | string | string array

Degradation variable names, specified as a string or string array. The strings in
DataVariables must be valid MATLAB variable name.

You can specify DataVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
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* Using dot notation after model creation.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing for nearest-neighbor searching, specified as either true
or false.

You can specify UseParallel:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Object Functions

predictRUL Estimate remaining useful life for a test component

fit Estimate parameters of remaining useful life model using historical data
compare Compare test data to historical data ensemble for similarity models
Examples

Train Pairwise Similarity Model

Load training data.

load('pairwiseTrainVectors.mat"')
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The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create a pairwise similarity model with default settings.
mdl = pairwiseSimilarityModel;
Train the similarity model using the training data.

fit(mdl,pairwiseTrainVectors)

Train Pairwise Similarity Model Using Tabular Data
Load training data.
load('pairwiseTrainTables.mat"')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a pairwise similarity model that computes distance using dynamic time warping
with an absolute distance metric.

mdl = pairwiseSimilarityModel('Method',"dtw", 'Distance',"absolute");

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(mdl,pairwiseTrainTables, "Time","Condition")

Predict RUL Using Pairwise Similarity Model

Load training data.

load('pairwiseTrainTables.mat"')
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The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a pairwise similarity model that computes distance using dynamic time warping
with an absolute distance metric and uses hours as a life time unit.

mdl = pairwiseSimilarityModel('Method',"dtw", 'Distance',"absolute", 'LifeTimeUnit", "hou

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(mdl,pairwiseTrainTables, "Time","Condition")

Load testing data. The test data contains the degradation feature measurements for a test
component up to the current life time.

load('pairwiseTestData.mat"')
Predict the RUL of the test component using the trained similarity model.

estRUL

predictRUL(mdl,pairwiseTestData)

estRUL = duration
93.671 hr

The estimated RUL for the component is around 94 hours.

See Also

Functions
hashSimilarityModel | residualSimilarityModel

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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reliabilitySurvivalModel

Probabilistic failure-time model for estimating remaining useful life

Description

Use reliabilitySurvivalModel to estimate the remaining useful life (RUL) of a
component using a probability distribution of component failure times. Reliability survival
models are useful when the only data you have are the failure times for an ensemble of
similar components, such as multiple machines manufactured to the same specifications.

To configure a reliabilitySurvivalModel object for a specific type of component,
use fit, which estimates the probability distribution coefficients from a collection of
failure-time data. Once you configure the parameters of your reliability survival model,
you can then predict the remaining useful life of similar components using predictRUL.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl = reliabilitySurvivalModel

mdl = reliabilitySurvivalModel(distribution)
mdl = reliabilitySurvivalModel(initModel)

mdl = reliabilitySurvivalModel(  ,Name,Value)
Description

mdl = reliabilitySurvivalModel creates a reliability survival model for estimating
RUL model that uses a Weibull distribution and initializes the model with default settings.
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mdl = reliabilitySurvivalModel(distribution) creates a reliability survival
model that uses the specified probability distribution function and sets the
Distribution property of the model.

mdl = reliabilitySurvivalModel(initModel) creates a reliability survival model
and initializes the model parameters using an existing reliabilitySurvivalModel
object initModel.

mdl = reliabilitySurvivalModel(  ,Name,Value) specifies user-settable
model properties using name-value pairs. For example,
reliabilitySurvivalModel('LifeTimeUnit', "days") creates a reliability survival

model that uses days as a life time unit. You can specify multiple name-value pairs.
Enclose each property name in quotes.

Input Arguments

initModel — Reliability survival model
reliabilitySurvivalModel object

Reliability survival model, specified as a reliabilitySurvivalModel object.

Properties

Distribution — Probability distribution function
"Weibull" (default) | "Normal" | "Poisson" | "Kernel" | "Rayleigh" | "Gamma" | ...

Probability distribution function used to model the life time distribution, specified as one
of the following:

Distribution String Distribution Object
"BirnbaumSaunders" BirnbaumSaundersDistribution
"Exponential" ExponentialDistribution
"Gamma" GammaDistribution
"GeneralizedPareto" GeneralizedParetoDistribution
"HalfNormal" HalfNormalDistribution
"InverseGaussian" InverseGaussianDistribution
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Distribution String Distribution Object
"Kernel" KernelDistribution
"Logistic" LogisticDistribution
"Loglogistic" LoglogisticDistribution
"Lognormal"” LognormalDistribution
"Nakagami" NakagamiDistribution
"Normal" NormalDistribution
"Poisson" PoissonDistribution
"Rayleigh" RayleighDistribution
"Stable" StableDistribution
"Weibull" WeibullDistribution

To configure the parameters of the probability distribution function, use the fit function.

ParameterValues — Distribution coefficients

vector

This property is read-only.

Distribution coefficients estimated by the fit function, specified as a vector. For more
information on the coefficients of each distribution function, see the corresponding
distribution object listed in Distribution. For more information on model fitting, see

fitdist.

ParameterCovariance — Covariance of the distribution coefficients

array

This property is read-only.

Covariance of the distribution coefficients estimated by the fit function, specified as a
positive array with size equal to the number of coefficients. For more information on the
coefficients of each distribution function, see the corresponding distribution object listed

inDistribution.

ParameterNames — Distribution coefficient names

string array

This property is read-only.
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Distribution coefficient names assigned when the model is trained using the fit function,
specified as string array. For more information on the coefficients of each distribution
function, see the corresponding distribution object listed in Distribution.

CensorVariable — Censor variable
"" (default) | string

Censor variable, specified as a string that contains a valid MATLAB variable name. The
censor variable is a binary variable that indicates which life-time measurements in data
are not end-of-life values.

CensorVariable must not match any of the strings in DataVariables or
LifeTimeVariable.

You can specify CensorVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
» Using dot notation after model creation.

LifeTimeVariable — Life time variable
""" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name. For
survival models, the life time variable contains the historical life span measurements of
components.

You can specify LifeTimeVariable:

» Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Manually using dot notation.

LifeTimeUnit — Life time variable units
"" (default) | value

Life time variable units, specified as a string.

The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).
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DataVariables — Data variables
""" (default)

Data variables, specified as an empty string. This property is ignored for reliability
survival models.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Object Functions

predictRUL Estimate remaining useful life for a test component
fit Estimate parameters of remaining useful life model using historical data

Examples

Train Reliability Survival Model

Load training data.

load('reliabilityData.mat"')

This data is a column vector of duration objects representing battery discharge times.
Create a reliability survival model with default settings.

mdl = reliabilitySurvivalModel;

Train the survival model using the training data.

fit(mdl, reliabilityData, "hours")
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Predict RUL Using Reliability Survival Model and View PDF

Load training data.

load('reliabilityData.mat")

This data is a column vector of duration objects representing battery discharge times.

Create a reliability survival model, specifying the life time variable and life time units.

mdl = reliabilitySurvivalModel('LifeTimeVariable',"DischargeTime", 'LifeTimeUnit"', "hour
Train the survival model using the training data.

fit(mdl, reliabilityData)

Predict the life span of a new component and obtain the probability distribution function
for the estimate.

[estRUL, ciRUL,pdfRUL] = predictRUL(mdl);
Plot the probability distribution.
bar(pdfRUL.RUL, pdfRUL.ProbabilityDensity)

xlabel('Remaining useful life (hours)")
xlim(hours([40 901))
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Improve the distribution view by providing the number of bins and bin size for the
prediction.

[estRUL, ciRUL,pdfRUL] = predictRUL(md1l, 'BinSize',0.5, 'NumBins',6500);
bar (pdfRUL.RUL,pdfRUL.ProbabilityDensity)

xlabel('Remaining useful life (hours)")

xlim(hours([40 90]))
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Predict the RUL for a component that has been operating for 50 hours.

[estRUL, ciRUL,pdfRUL] = predictRUL(md1l,hours(50),'BinSize',0.5, 'NumBins',500);
bar (pdfRUL.RUL,pdfRUL.ProbabilityDensity)

xlabel('Remaining useful life (hours)")

xlim(hours ([0 40]1))
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See Also

Functions
covariateSurvivalModel

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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residualSimilarityModel

Residual comparison-based similarity model for estimating remaining useful life

Description

Use residualSimilarityModel to estimate the remaining useful life (RUL) of a
component using a residual comparison-based similarity model. This model is useful when
you have degradation profiles for an ensemble of similar components, such as multiple
machines manufactured to the same specifications, and you know the dynamics of the
degradation process. The historical data for each member of the data ensemble is fitted
with a model of identical structure. The degradation data of the test component is used to
compute 1-step prediction errors, or residuals, for each ensemble model. The magnitudes
of these errors indicate how similar the test component is to the corresponding ensemble
members.

To configure a residualSimilarityModel object, use fit, which trains and stores the
degradation model for each data ensemble member. Once you configure the parameters
of your similarity model, you can then predict the remaining useful life of similar
components using predictRUL. For similarity models, the RUL of the test component is
estimated as the median statistic of the life time span of the most similar components
minus the current life time value of the test component.

For more information on predicting remaining useful life, see “Models for Predicting
Remaining Useful Life”.

Creation

Syntax

mdl
mdl
mdl

residualSimilarityModel
residualSimilarityModel (initModel)
residualSimilarityModel(  ,Name,Value)
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Description

mdl = residualSimilarityModel creates a residual comparison-based similarity
model for estimating RUL and initializes the model with default settings.

mdl = residualSimilarityModel(initModel) creates a residual comparison-based
similarity model and initializes the model parameters using an existing
residualSimilarityModel object initModel.

mdl = residualSimilarityModel(  ,Name,Value) specifies user-settable model
properties using name-value pairs. For example,
hashSimilarityModel('LifeTimeUnit', "days") creates a residual comparison-
based similarity model that uses days as a life time unit. You can specify multiple name-
value pairs. Enclose each property name in quotes.

Input Arguments

initModel — Residual comparison-based similarity model
residualSimilarityModel object

Residual comparison-based similarity model, specified as a residualSimilarityModel
object.

Properties

Method — Type of model
"arma2" (default) | "linear" | "arima2" | "poly2" | "expl" | ...

Type of model trained using the fit function and used for residual generation, specified
as one of the following:

* "linear" — Line with offset term

* "poly2" — Second-order polynomial

* "poly3" — Third-order polynomial

* "expl" — Exponential with offset term

+ "exp2" — Sum of two exponentials

* "arma2" — Second-order ARMA model
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* "arma3" — Third-order ARMA model
* "arima2" — Second-order ARMA model with noise integration
* "arima3" — Third-order ARMA model with noise integration

Select the model type based on your knowledge of the dynamics of the component
degradation process.

You can specify Method:

* Using a name-value pair when you create the model.
» Using dot notation after model creation.

For more information on estimating ARMA and polynomial models, see armax and
polyfit, respectively.

Distance — Distance computation method
"euclidian" (default) | "absolute" | function handle

Distance computation method, specified as one of the following:

* "euclidian" — Use the 2-norm of the residual signal.
* "absolute" — Use the 1-norm of the residual signal.
* Function handle — Use a custom function of the form:

D = distanceFunction(r)
where,

* risthe residual, specified as a column vector.
* D is the distance, returned as nonnegative scalar.

You can specify Distance:

» Using a name-value pair when you create the model.
* Using dot notation after model creation.

Models — Parameters of the fitted models
cell array

This property is read-only.
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Parameters of the fitted models for each member of the training data ensemble, specified
as a cell array and assigned by the fit function. The content of Models depends on the

type of model used for regression, as specified in Method.

Method Model Structure Models Cell Content
"linear" at+b Row vector — [a b]
"poly2" at’> + bt + ¢ Row vector — [a b c]
"poly3" at® + bt? + ct +d Row vector — [a b ¢ d]
"expl" aebi+c Row vector — [a b c]
"exp2" aebt+cedt Row vector — [a b ¢ d]
"arma2" Second-order ARMA model: Structure with fields:
A(q)S(t)=C(q)e(?) * A — Row vector [1 a; a,]
* C— Row vector[1 c¢]
where
© A(q) =1 a1q" a,q?]
* C(q) =11 ciq]
* S(t) is the degradation feature
"arma3" Similar to "arma2", but with A(q) Structure with fields:
third-order and C(q) second-order
* A — Row vector[1 q; a,
a,]
* C— Row vector [1 c; ¢,]
"arima2" Similar to "arma2", but with an Structure with fields:
additional noise integrator:
* A — Row vector [1 a; a,]
C(q) « C— Row vector [1 ¢;]
A(q)S(t) = ——e(?)
1-q
"arima3" Similar to "arma3", but with an Structure with fields:
additional noise integrator
* A — Row vector [1 q; a,
a,]
* C— Row vector [1 ¢; ¢,]
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For more information on estimating ARMA and polynomial models, see armax and
polyfit, respectively.

ModelMSE — Mean squared error of the estimation for each model
vector

This property is read-only.

Mean squared error of the estimation for each model in Models, specified as a vector and
assigned by the fit function.

LifeSpan — Ensemble member life spans
double vector (default) | vector of duration objects

This property is read-only.

Ensemble member life spans, specified as a double vector or duration object vector and
computed from the ensemble member degradation profiles by the fit function.

NumNearestNeighbors — Number of nearest neighbors for RUL estimation
Inf (default) | finite positive integer

Number of nearest neighbors for RUL estimation, specified as Inf or a finite positive
integer. If NumNearestNeighbors is Inf, then predictRUL uses all the ensemble
members during estimation.

You can specify NumNearestNeighbors:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

IncludeTies — Flag to include ties
true (default) | false

Flag to include ties, specified as true or false. When IncludeTies is true, the model
includes all neighbors whose distance to the test component data is less than the Kth
smallest distance, where K is equal to NumNearestNeigbors.

You can specify IncludeTies:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.
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Standardize — Flag for standardizing residuals
false (default) | true

Flag for standardizing residuals before computing distance, specified as true or false.

When Standardize is true, the residuals are scaled by the inverse square root of the
estimated mean squared errors in Mode LMSE.

You can specify Standardize:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

LifeTimeVariable — Life time variable
"" (default) | string

Life time variable, specified as a string that contains a valid MATLAB variable name or

When you train the model using the fit function, if your training data is a:

* table, then LifeTimeVariable must match one of the variable names in the table.
 timetable, then LifeTimeVariable one of the variable names in the table or the
dimension name of the time variable, data.Properties.DimensionNames{1}.

You can specify LifeTimeVariable:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

LifeTimeUnit — Life time variable units
"" (default) | value

Life time variable units, specified as a string.

The units of the life time variable do not need to be time-based. The life of the test
component can be measured in terms of a usage variable, such as distance traveled
(miles) or fuel consumed (gallons).

DataVariables — Degradation variable names
""" (default) | string | string array
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Degradation variable names, specified as a string or string array. The strings in
DataVariables must be valid MATLAB variable name.

You can specify DataVariables:

* Using a name-value pair when you create the model.
* As an argument when you call the fit function.
* Using dot notation after model creation.

UseParallel — Flag for using parallel computing
false (default) | true

Flag for using parallel computing for nearest-neighbor searching, specified as either true
or false.

You can specify UseParallel:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

UserData — Additional model information
[ 1 (default) | any data type or format

Additional model information for bookkeeping purposes, specified as any data type or
format. The model does not use this information.

You can specify UserData:

* Using a name-value pair when you create the model.
* Using dot notation after model creation.

Object Functions

predictRUL Estimate remaining useful life for a test component

fit Estimate parameters of remaining useful life model using historical data
compare Compare test data to historical data ensemble for similarity models
Examples
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Train Residual Similarity Model
Load training data.
load('residualTrainVectors.mat"')

The training data is a cell array of column vectors. Each column vector is a degradation
feature profile for a component.

Create a residual similarity model with default settings.
mdl = residualSimilarityModel;

Train the similarity model using the training data.

fit(mdl, residualTrainVectors)

Train Residual Similarity Model Using Tabular Data
Load training data.
load('residualTrainTables.mat")

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a residual similarity model that fits the data with a third-order ARMA model and
uses an absolute distance metric.

mdl = residualSimilarityModel('Method',"arma3", 'Distance',"absolute");

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(mdl, residualTrainTables, "Time", "Condition")

Predict RUL Using Residual Similarity Model

Load training data.
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load('residualTrainTables.mat')

The training data is a cell array of tables. Each table is a degradation feature profile for a
component. Each profile consists of life time measurements in the "Time" variable and
corresponding degradation feature measurements in the "Condition" variable.

Create a residual similarity model that fits the data with a third-order ARMA model and
uses hours as the life time unit.

mdl = residualSimilarityModel('Method',"arma3",'LifeTimeUnit"', "hours");

Train the similarity model using the training data. Specify the names of the life time and
data variables.

fit(mdl, residualTrainTables, "Time", "Condition")

Load testing data. The test data contains the degradation feature measurements for a test
component up to the current life time.

load('residualTestData.mat")

Predict the RUL of the test component using the trained similarity model.
estRUL = predictRUL(md1l, residualTestData)

estRUL = duration
85.73 hr

The estimated RUL for the component is around 86 hours.

See Also

Functions
hashSimilarityModel | pairwiseSimilarityModel

Topics
“Models for Predicting Remaining Useful Life”

Introduced in R2018a
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simulationEnsembleDatastore

Manage ensemble data generated by generateSimulationEnsemble or by logging
simulation data in Simulink

Description

A simulationEnsembleDatastore object is a datastore specialized for use in
developing algorithms for condition monitoring and predictive maintenance using
simulated data.

This object specifies the data variables, independent variables, and condition variables
stored in a collection of MATLAB data files (MAT-files). The data files contain
Simulink.SimulationData.Dataset variables that are the result of logging data
during Simulink model simulation.

For a detailed example illustrating the use of a simulated ensemble datastore, see
“Generate and Use Simulated Data Ensemble”. For general information about data
ensembles in Predictive Maintenance Toolbox, see “Data Ensembles for Condition
Monitoring and Predictive Maintenance”.

Creation

To create a simulationEnsembleDatastore object:

1  Generate and log simulation data from a Simulink model. You can do so using
generateSimulationEnsemble or any other means of logging simulation to disk.

2 Create a simulationEnsembleDatastore object that points to the generated
simulation data using the simulationEnsembleDatastore command (described
below).

If you have simulation data previously generated with generateSimulationEnsemble
or other means, you can use the creation function simulationEnsembleDatastore to
create a new simulation ensemble datastore object at any time.
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Syntax

ensemble simulationEnsembleDatastore(location)

ensemble = simulationEnsembleDatastore(location,signallog)
ensemble = simulationEnsembleDatastore(location,signallog,
Name,Value)

Description

ensemble = simulationEnsembleDatastore(location) creates a simulation
ensemble from data previously generated using generateSimulationEnsemble in the
folder specified by Location. The function identifies ensemble variables in the generated
data from information stored in the generated MAT-files. The function populates the
DataVariables and SelectedVariables properties of ensemble with the names of
these ensemble variables.

ensemble = simulationEnsembleDatastore(location,signallog) uses
signallog to determine which variable in the MAT-files contains logged signals. Use the
variable name specified in the Signal logging configuration parameter of the Simulink
model from which the data is generated. Specifying this variable allows the ensemble to
treat those signals as ensemble data variables, rather than the signallog variable itself.
The other variables in the MAT-file are also returned as ensemble data variables.

ensemble = simulationEnsembleDatastore(location,signallog,

Name, Value) specifies additional properties on page 2-86 of the object using one or
more name-value pair arguments. For example, using ' IndependentVariables',
["Age";"ID"] specifies the independent variables when you create the object.

Input Arguments

location — File path
string | character vector

File path to the location in which to store simulation data, specified as a string or a
character vector. The file path can be any location supported by MATLAB datastores,
including an IRI path pointing to a remote location. However, when you use a
simulationEnsembleDatastore to manage remote data, you cannot use
writeToLastMemberRead to add data to the ensemble datastore. For more information
about working with remote data in MATLAB, see “Read Remote Data” (MATLAB)
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Example: pwd + "\simResults"

signallog — Variable name of logged signals
string | character vector

Variable name of logged signals, specified as a string or a character vector. This input
argument tells simulationEnsembleDatastore which data variable in the stored MAT-
files contains the logged simulation data. This variable name is specified in the Signal
logging configuration parameter of the Simulink model from which the data is
generated.

Example: "logsout™

Properties

DataVariables — Data variables in the ensemble
string array of logged signal names (default) | string array

Data variables in the ensemble, specified as a string array. Data variables are the main
content of the members of an ensemble. Data variables can include measured data or
derived data for analysis and development of predictive maintenance algorithms. For
example, your data variables might include measured or simulated vibration signals and
derived values such as mean vibration value or peak vibration frequency.

simulationEnsembleDatastore sets the initial value of DataVariables to the names
of all the logged signals in the data generated generateSimulationEnsemble.

You can also specify DataVariables using a cell array of character vectors, such as
{'Vibration'; 'Tacho'}, but the variable names are always stored as a string array,
["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is
flattened to a column vector.

IndependentVariables — Independent variables in the ensemble
[ 1 (default) | string array

Independent variables in the ensemble, specified as a string array. You typically use
independent variables to order the members of an ensemble. Examples are timestamps,
number of operating hours, or miles driven. Set this property to the names of such
variables in your ensemble.

You can also specify IndependentVariables using a cell array of character vectors,
such as {'Time"'; 'Age'}, but the variable names are always stored as a string array,
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["Time";"Age"]. If you specify a matrix of variable names, the matrix is flattened to a
column vector.

ConditionVariables — Condition variables in the ensemble
[ 1 (default) | string array

Condition variables in the ensemble, specified as a string array. Use condition variables to
label the members in a ensemble according to the fault condition or other operating
condition under which the ensemble member was collected.

You can also specify ConditionVariables using a cell array of character vectors, such
as {'Gear Fault';'Temperature'}, butthe variable names are always stored as a
string array, ["Gear Fault";"Temperature"]. If you specify a matrix of variable
names, the matrix is flattened to a column vector.

SelectedVariables — Variables to read
string array of logged signal names (default) | string array

Variables to read from the ensemble, specified as a string array. Use this property to
specify which variables are extracted to the MATLAB workspace when you use the read
command to read data from the ensemble. read returns a table row containing a table
variable for each name specified in SelectedVariables. For example, suppose that you
have an ensemble, ensemble, that contains six variables, and you want to read only two
of them, Vibration and Fault State. Set the SelectedVariables property and call
read.

ensemble.SelectedVariables = ["Vibration";"Fault State"];
data = read(ensemble)

SelectedVariables must be a subset of the variables in the DataVariables,
ConditionVariables, and IndependentVariables properties. If
SelectedVariables is empty, read generates an error.

simulationEnsembleDatastore sets the initial value of SelectedVariables to the
names of all the logged signals in the data generated generateSimulationEnsemble.

You can specify SelectedVariables using a cell array of character vectors, such as
{'Vibration'; 'Tacho'}, but the variable names are always stored as a string array,
["Vibration";"Tacho"]. If you specify a matrix of variable names, the matrix is
flattened to a column vector.

NumMembers — Number of members in ensemble
positive integer
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This property is read-only.
Number of members in the ensemble, specified as a positive integer.

LastMemberRead — File name of last ensemble member read
"" (default) | string

This property is read-only.

File name of last ensemble member read into the MATLAB workspace, specified as a
string. When you use the read command to read data from an ensemble datastore, the
software determines which ensemble member to read next, and reads data from the
corresponding file. When you call writeToLastMemberRead to add data back to the
ensemble datastore, that function writes to the last member read. The LastMemberRead
property contains the path to the file to which writeTolLastMemberRead writes.

Object Functions

The read and writeTolLastMemberRead functions are specialized for Predictive
Maintenance Toolbox ensemble data. Other functions, such as reset and hasdata, are
identical to those used with datastore objects in MATLAB.

read Read member data from an ensemble datastore
writeToLastMemberRead Write data to member of an ensemble datastore
reset Reset datastore to initial state

hasdata Determine if data is available to read

progress Determine how much data has been read
numpartitions Number of datastore partitions

partition Partition a datastore

tall Create tall array

Examples

Generate Ensemble of Fault Data

Generate a simulation ensemble datastore of data representing a machine operating
under fault conditions by simulating a Simulink® model of the machine while varying a
fault parameter.
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Load the Simulink model. This model is a simplified version of the gear-box model
described in “Using Simulink to Generate Fault Data”. For this example, only one fault
mode is modeled, a gear-tooth fault.

mdl = 'TransmissionCasingSimplified';
open_system(mdl)

The gear-tooth fault is modeled as a disturbance in the Gear Tooth fault subsystem.
The magnitude of the disturbance is controlled by the model variable ToothFaultGain,
where ToothFaultGain = 0 corresponds to no gear-tooth fault (healthy operation). To
generate the ensemble of fault data, you use generateSimulationEnsemble to
simulate the model at different values of ToothFaultGain, ranging from -2 to zero. This
function uses an array of Simulink.SimulationInput objects to configure the
Simulink model for each member in the ensemble. Each simulation generates a separate
member of the ensemble in its own data file. Create such an array, and use setVariable
to assign a tooth-fault gain value for each run.

toothFaultValues = -2:0.5:0; % 5 ToothFaultGain values

for ct = numel(toothFaultValues):-1:1

simin(ct) = Simulink.SimulationInput(mdl);

simin(ct) = setVariable(simin(ct), 'ToothFaultGain',toothFaultValues(ct));
end

For this example, the model is already configured to log certain signal values, Vibration
and Tacho, as well as state values xout and xfinal (see “Export Signal Data Using
Signal Logging” (Simulink)). generateSimulationEnsemble further configures the
model to:

* Save logged data to files in the folder you specify.

» Use the timetable format for signal logging.

* Store each Simulink.SimulationInput object in the saved file with the
corresponding logged data.

Specify a location for the generated data. For this example, save the data to a folder
called Data within your current folder. The indicator status is 1 (true) if all the
simulations complete without error.

mkdir Data

location = fullfile(pwd, 'Data');
[status,E] = generateSimulationEnsemble(simin,location);
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[26-Feb-2018 19:09:46] Running SetupFcn...
[26-Feb-2018 19:09:46] Running simulations...

[26-Feb-2018 19:10:11] Completed 1 of 5
[26-Feb-2018 19:10:30] Completed 2 of 5
[26-Feb-2018 19:10:45] Completed 3 of 5
[26-Feb-2018 19:11:00] Completed 4 of 5
[26-Feb-2018 19:11:16] Completed 5 of 5

Finally, create the simulation ensemble datastore using the generated data. The resulting
simulationEnsembleDatastore object points to the generated data. The object lists
the data variables in the ensemble, and by default all the variables are selected for
reading. Examine the DataVariables and SelectedVariables properties of the

ensemble to confirm these designations.

simulation
simulation
simulation
simulation
simulation

ensemble = simulationEnsembleDatastore(location)

ensemble =

simulationEnsembleDatastore with properties:

DataVariables:
IndependentVariables:
ConditionVariables:
SelectedVariables:
NumMembers:
LastMemberRead:

ensemble.DataVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"XFinal"
"xout"

ensemble.SelectedVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"

[6x1
[Ox0
[Ox0
[6x1
5

[Ox0

string]
string]
string]
string]

string]

runs
runs
runs
runs
runs
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"xFinal"
leou.tll

You can now use ensemble to read and analyze the generated data in the ensemble
datastore. See simulationEnsembleDatastore for more information.

Extract Subset of Stored Variables from Ensemble Member

In general, you use the read command to extract data from a
simulationEnsembleDatastore object into the MATLAB® workspace. Often, your
ensemble contains more variables than you need to use for a particular analysis. Use the
SelectedVariables property of the simulationEnsembleDatastore object to
select a subset of variables for reading.

For this example, use the following code to create a simulationEnsembleDatastore

object using data previously generated by running a Simulink® model at a various fault

values (See generateSimulationEnsemble.). The ensemble includes simulation data

for five different values of a model parameter, ToothFaultGain. Because of the volume
of data, the unzip operation takes a few minutes.

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd, 'logsout"')

ensemble =
simulationEnsembleDatastore with properties:

DataVariables: [6x1 string]
IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]

NumMembers:

[

[

[
SelectedVariables: [6x1 string]

5

LastMemberRead: [

0x0 string]

The model that generated the data, TransmissionCasingSimplified, was configured
such that the resulting ensemble contains variables including accelerometer data,
Vibration, and tachometer data, Tacho. By default, the
simulationEnsembleDatastore object designates all these variables as both data
variables and selected variables, as shown in the DataVariables and
SelectedVariables properties.
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ensemble.DataVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"

ensemble.SelectedVariables

ans = 6x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"

Suppose that for the analysis you want to do, you need only the Vibration data and the
Simulink.SimulationInput object that describes the conditions under which this
member data was simulated. Set ensemble.SelectedVariables to specify the
variables you want to read. The read command then extracts those variables from the
current ensemble member.

ensemble.SelectedVariables = ["Vibration";"SimulationInput"];
datal = read(ensemble)

datal=Ix2 table
Vibration SimulationInput

[20202x1 timetable] [1x1 Simulink.SimulationInput]

data.Vibration is a cell array containing one timetable that stores the simulation
times and the corresponding vibration signal. You can now process this data as needed.
For instance, extract the vibration data from the table and plot it.

vibdatal = datal.Vibration{1l};
plot(vibdatal.Time,vibdatal.Data)
title('Vibration - First Ensemble Member')



simulationEnsembleDatastore

Vibration - First Ensemble Member
2 T T T T T

1\ f rl I |
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The next time you call read on this ensemble, the last-read member designation advances
to the next member of the ensemble. (See “Data Ensembles for Condition Monitoring and
Predictive Maintenance” for more information.) Read the selected variables from the next

member of the ensemble.
data2 = read(ensemble)

data2=1Ix2 table
Vibration SimulationInput

[20215x1 timetable] [1x1 Simulink.SimulationInput]
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To confirm that datal and data2 contain data from different ensemble members,
examine the values of the varied model parameter, ToothFaultGain. For each ensemble,
this value is stored in the Variables field of the SimulationInput variable.

datal.SimulationInput{l}.Variables

ans =
Variable with properties:

Name: 'ToothFaultGain'
Value: -2
Workspace: 'global-workspace'

data2.SimulationInput{l}.Variables

ans =
Variable with properties:

Name: 'ToothFaultGain'
Value: -1.5000
Workspace: 'global-workspace'

This result confirms that datal is from the ensemble with ToothFaultGain = -2, and
data2 is from the ensemble with ToothFaultGain = -1.5.

Append Derived Data to Ensemble Members

You can process data in an ensemble datastore and add derived variables to the ensemble
members. For this example, process a variable value to compute a label that indicates
whether the ensemble member contains data obtained with a fault present. You then add
that label to the ensemble.

For this example, use the following code to create a simulationEnsembleDatastore
object using data previously generated by running a Simulink® model at a various fault
values. (See generateSimulationEnsemble.) The ensemble includes simulation data
for five different values of a model parameter, ToothFaultGain. The model was
configured to log the simulation data to a variable named logsout in the MAT-files that
are stored for this example in simEnsData.zip. Because of the volume of data, the
unzip operation takes several minutes.



simulationEnsembleDatastore

unzip simEnsData.zip % extract compressed files
ensemble = simulationEnsembleDatastore(pwd, 'logsout"')

ensemble =
simulationEnsembleDatastore with properties:

DataVariables: [6x1 string]
IndependentVariables: [0x0 string]
ConditionVariables: [0x0 string]
SelectedVariables: [6x1 string]
NumMembers: 5
LastMemberRead: [0x0 string]

Read the data from the first member in the ensemble. The software determines which
ensemble is the first member, and updates the property ensemble.LastMemberRead to
reflect the name of the corresponding file.

data = read(ensemble)

data=1x6 table
SimulationInput SimulationMetadata Tach

[1x1 Simulink.SimulationInput] [1x1 Simulink.SimulationMetadata] [20202x1 tir

By default, all the variables stored in the ensemble data are designated as
SelectedVariables. Therefore, the returned table row includes all ensemble variables,
including a variable SimulationInput, which contains the
Simulink.SimulationInput object that configured the simulation for this ensemble
member. That object includes the ToothFaultGain value used for the ensemble member,
stored in a data structure in its Variables property. Examine that value.

data.SimulationInput
ans = Ix1 cell array
{1x1 Simulink.SimulationInput}
Inputvars = data.SimulationInput{l}.Variables;
Inputvars.Name

ans =
'"ToothFaultGain'
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Inputvars.Value
ans = -2

Suppose that you want to convert the ToothFaultGain values for each ensemble
member into a binary indicator of whether or not a tooth fault is present. Suppose
furtther that you know from your experience with the system that tooth-fault gain values
less than 0.1 in magnitude are small enough to be considered healthy operation. Convert
the gain value for this ensemble into an indicator that is 0 (no fault) for -0.1 < gain < 0.1,
and 1 (fault) otherwise.

sT = abs(Inputvars.Value) < 0.1;

To append the new tooth-fault indicator to the corresponding ensemble data, first expand
the list of data variables in the ensemble.

ensemble.DataVariables = [ensemble.DataVariables; "ToothFault"];
ensemble.DataVariables

ans = 7x1 string array
"SimulationInput"
"SimulationMetadata"
"Tacho"
"Vibration"
"xFinal"
"xout"
"ToothFault"

This operation is conceptually equivalent to adding a column to the table of ensemble
data. Now that DataVariables contains the new variable name, assign the derived
value to that column of the member using writeTolLastMemberRead.

writeToLastMemberRead(ensemble, 'ToothFault',sT);

In practice, you want to append the tooth-fault indicator to every member in the
ensemble. To do so, reset the ensemble datastore to its unread state, so that the next read
starts at the first ensemble member. Then, loop through all the ensemble members,
computing ToothFault for each member and appending it. The reset operation does
not change ensemble.DataVariables, so ToothFault is still present in that list.

reset(ensemble);

sT = false;



simulationEnsembleDatastore

while hasdata(ensemble)
data = read(ensemble);
InputVars = data.SimulationInput{l}.Variables;
TFGain = InputVars.Value;
sT = abs(TFGain) < 0.1;
writeToLastMemberRead(ensemble, 'ToothFault',sT);
end

Finally, designate the new tooth-fault indicator as a condition variable in the ensemble
datastore. You can use this designation to track and refer to variables in the ensemble
data that represent conditions under which the member data was generated.

ensemble.ConditionVariables = {"ToothFault"};
ensemble.ConditionVariables

ans =
"ToothFault"

You can add the new variable to ensemble.SelectedVariables when you want to read
it out for further analysis. For an example that shows more ways to manipulate and
analyze data stored in a simulationEnsembleDatastore object, see “Using Simulink
to Generate Fault Data”.

. “Generate and Use Simulated Data Ensemble”

See Also

fileEnsembleDatastore | generateSimulationEnsemble

Topics
“Generate and Use Simulated Data Ensemble”
“Data Ensembles for Condition Monitoring and Predictive Maintenance”

Introduced in R2018a
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